Volume 29, Issue 4 (12-2021)                   www.ijcm.ir 2021, 29(4): 10-10 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghafaribijar, Arvin, Dargahi. Geochemistry and petrogenesis of potassic monzonites in the Lar igneous suite, north of Zahedan, eastern Iran: Constraints on the origin of C-type adakites. www.ijcm.ir 2021; 29 (4) :10-10
URL: http://ijcm.ir/article-1-1685-en.html
Abstract:   (595 Views)
The Lar igneous suite occurs in the central part of the Sistan suture zone, about 22 km north of Zahedan. The suite comprises varied intrusive, hypabyssal and extrusive silica under saturated to silica saturated rock types including syenite, shonkinite, lamprophyres, monzonite, tuff and breccia. Stock-like monzonitic bodies crops out mainly in the south-southeast and northern parts of the suite. The study rocks are quartz monzonite to monzonite in modal composition with porphyritic texture including alkali feldspar, plagioclase, quartz, amphibole and biotite. Their high SiO2, Al2O3, K2O and K2O/Na2O classify them as silica saturated metaluminous, shoshonitic and Roman Province type potassic monzonites. Decreasing in FeO, CaO, MnO, TiO2, P2O5 and MgO concentrations, during magma evolution, represent the fractionation of Ca-plagioclase, apatite and titanite along with mafic crystals from their parental magma. Geochemical studies reveal that partial melting, in comparison to differentiation processes, has been more effective on their geochemical features. Monzonites in the Lar igneous suite show LREE and LILE (except Ba) enrichment and HFSE (Nb, Ta, Ti and Zr) depletion. Negative anomalies in Ba, Nb, Ta and Ti, and high Ba/Nb ratio in these rocks represent their relation to subduction processes. They classify, due to their high K2O and K2O/Na2O ratio, Sr/Y adakitic ratio and post collisional affinities, as continental or C-type adakites. Listric-shaped REE profile, Nb/Ta ratios similar to continental crust and positive correlations between La/Yb and Sr/Y ratios all indicate partial melting of amphibole-bearing lower continental crust. Moreover, high Th and Ni concentrations, Ce negative anomaly, Nb/U ratios similar to subducted sediments and also Mg# higher than 45 probably reveal that not only magmas with geochemical signatures similar to composition of subducted sediments have been contributed in the formation of lower continental crust but also the later have been delaminated or foundered and it’s resulted melts, en route to surface, have inherited some peridotite geochemical signatures.
Full-Text [PDF 7757 kb]   (223 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Barnett Z. A., Gudmundsson A., "Numerical modelling of dykes deflected into sills to form a magma chamber", Journal of Volcanology and Geothermal Research 281 (2014) 1-11. [DOI:10.1016/j.jvolgeores.2014.05.018]
5. [2] Ju W., Hou G., Hari K.R., "Dyke emplacement in the Narmada rift zone and implications for the evolution of the Deccan Traps", Geological Society, London, Special Publications, 445 (2017) 297-315. [DOI:10.1144/SP445.1]
9. [3] Liang Y., Deng J., Liu X., Wang Q., Qin C., Li Y., Yang Y., Zhou M., Jiang J., "Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism", Lithos 302 (2018) 480-495. [DOI:10.1016/j.lithos.2018.01.031]
13. [4] Falahaty S., Saiedi M., Mehvari R., Noghreyan M., Khalili M., Torabi G., "The contrasting of mineralogy of gabbroic and amphibolitic dykes in serpentinites from the ophiolite of north Naien", Iranian Journal of Crystallography and Mineralogy 19 (2011) 439-450. (In Persian)
14. [5] Torabi G., Arai S., Abbasi H., "Eocene continental dyke swarm from Central Iran (Khur area)", Petrology 22 (2014) 617-632. [DOI:10.1134/S086959111406006X]
18. [6] Torabi G., "Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction", Island Arc 19 (2010) 277-291. [DOI:10.1111/j.1440-1738.2009.00705.x]
22. [7] Nazari G., Torabi G., "Petrogenetic processes, crystallization conditions and nature of the Lower-Oligocene calc-alkaline spessartitic lamprophyres from Kal-e-kafi area (East of Anarak, Isfahan province)", Journal of Economic Geology 9 (2017) 375-395. (In Persian with English abstract)
23. [8] Tabatabaei manesh S. M., Mahmoodabadi L., Mirlohi A. S., "Geochemistry of the Eocene volcanic rocks in the SW of Jandaq (NE of Isfahan province)", Petrology 14 (2013) 79-92. (In Persian with English abstract)
24. [9] Sargazi M., Torabi G., Morishita T., "Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of the Jandaq, Central Iran): Implications for Eastern branch of Neo-Tethys subduction", Turkish Journal of Earth Sciences 28 (2019) 558-588. [DOI:10.3906/yer-1807-45]
28. [10] Aistov L., Melnikov B., Krivyakin B., Morozov L., "Geology of the Khur Area (Central Iran)", Geological Survey of Iran, Report 20 (1984) 132 p.
29. [11] Berra F., Zanchi A., Angiolini L., Vachard D., Vezzoli G., Zanchetta S., Bergomi M., Javadi H. R., Kouhpeyma M., "The upper Palaeozoic Godar-e-Siah Complex of Jandaq: evidence and significance of a North Palaeotethyan succession in Central Iran", Journal of Asian Earth Sciences 138 (2017) 272-290. [DOI:10.1016/j.jseaes.2017.02.006]
33. [12] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
37. [13] Deer W.A., Owie R.A.H., Zussman J., "An introduction to the rock forming minerals", Longman, London (1992) 696 p.
38. [14] Berger J., Femenias O., Mercier J.C.C., Demaiffe D., "Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker", Journal of Metamorphic Geology 23 (2005) 795-812. [DOI:10.1111/j.1525-1314.2005.00610.x]
42. [15] Le Bas M.J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 267-288. [DOI:10.2475/ajs.260.4.267]
46. [16] Leterrier J., Maury R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139-154. [DOI:10.1016/0012-821X(82)90122-4]
50. [17] France L., Ildefonse B., Koepke J., Bech F., "A new method to estimate the oxidation state of basaltic series from microprobe analyses", Journal of Volcanology and Geothermal Research, 189 (2010) 340-346. [DOI:10.1016/j.jvolgeores.2009.11.023]
54. [18] Schweitzer E.L., Papike J.J., Bence A.E., "Statistical analysis of clinopyroxenes from deep-sea basalts", American Mineralogist 64 (1979) 501-513.
55. [19] Delor C.P., Rock N.M.S., "Alkaline-ultramafic lamprophyre dykes from the Vestfold Hills, Princess Elizabeth Land (East Antarctica): primitive magmas of deep mantle origin", Antarctic Science 3 (1991) 419-432. [DOI:10.1017/S0954102091000512]
59. [20] Wass S.Y., "Multiple origins of clinopyroxenes in alkali basaltic rocks", Lithos 12 (1979) 115-132. [DOI:10.1016/0024-4937(79)90043-4]
63. [21] Helz R.T., "Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity Part I. Mafic Phases", Journal of Petrology 14 (1973) 249-302. [DOI:10.1093/petrology/14.2.249]
67. [22] Aoki K.I., Shiba I., "Pyroxenes from lherzolite inclusions of Itinome-gata, Japan", Lithos 6 (1973) 41-51. [DOI:10.1016/0024-4937(73)90078-9]
71. [23] Nachit H., "Contribution a L'etude analytique et experimental des biotites des granitoids Applications typologiques", These de Doctorat De Ľ univesité de Bretagne accidental, (1986) 236 p.
72. [24] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Comptes Rendus Geoscience 337 (2005) 1415-1420. [DOI:10.1016/j.crte.2005.09.002]
76. [25] Anderson J.L., Barth A.P., Wooden J.L., Mazdab F., "Thermometers and thermobarometers in granitic systems", Reviews in Mineralogy and Geochemistry 69 (2008) 121-142. [DOI:10.2138/rmg.2008.69.4]
80. [26] Abdel-Rahman A.F.M., "Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas", Journal of Petrology 35 (1994) 525-541. [DOI:10.1093/petrology/35.2.525]
84. [27] Nimis P., Taylor W.R., "Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology 139 (2000) 541-554. [DOI:10.1007/s004100000156]
88. [28] Putirka K.D., "Thermometers and barometers for volcanic systems", Reviews in mineralogy and geochemistry 69 (2008) 61-120. [DOI:10.2138/rmg.2008.69.3]
92. [29] Ashchepkov I.V., André L., "Pyroxenite xenoliths in picrite basalts (Vitim Plateau): origin and differentiation of mantle melts", Russian Geology and Geophysics 43 (2002) 343-363.
93. [30] Wang W., Gasparik T., "Metasomatic clinopyroxene inclusions in diamonds from the Liaoning province, China", Geochimica et Cosmochimica Acta 65 (2001) 611-620. [DOI:10.1016/S0016-7037(00)00553-6]
97. [31] Vannucci R., Bottazzi P., Wulff-Pedersen E., Neumann E.R., "Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents", Earth and Planetary Science Letters 158 (1998) 39-51. [DOI:10.1016/S0012-821X(98)00040-5]
101. [32] McDonough W. F., Sun S. S., "The composition of the Earth", Chemical Geology 120 (1995) 223-253. [DOI:10.1016/0009-2541(94)00140-4]
105. [33] Sun S. S. and McDonough W. F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes", Geological Society of London, Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
109. [34] Jamshidzaei A. and Torabi., "Petrology of porphyritic quartz monzodiorite stock and Eocene dykes with adakitic nature from SW of Jandaq (NE of Isfahan province); Evidence of oceanic crust subduction around the Central-East Iranian Microcontinent", Journal of Economic Geology 10 (2018) 355-379. (In Persian with English abstract)
110. [35] Shirdashtzadeh N., Torabi G., Meisel T., Arai S., Bokhari S.N.H., Samadi R. Gazel E., "Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): implications for the Eastern Neo-Tethys evolution", Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 273 (2014) 89-120. [DOI:10.1127/0077-7749/2014/0418]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb