دوره 29، شماره 4 - ( 10-1400 )                   جلد 29 شماره 4 صفحات 852-837 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghafaribijar, Arvin, Dargahi. Geochemistry and petrogenesis of potassic monzonites in the Lar igneous suite, north of Zahedan, eastern Iran: Constraints on the origin of C-type adakites. www.ijcm.ir 2021; 29 (4) :837-852
URL: http://ijcm.ir/article-1-1685-fa.html
غفاری بیجار ساسان، آروین محسن، درگاهی سارا. زمین‌شیمی و سنگ‌زایی مونزونیت‌های پتاسیم‌دار در مجموعه آذرین لار در شمال زاهدان، شرق ایران؛ با تاکید بر خاستگاه آداکیت‌های نوع C. مجله بلورشناسی و کانی شناسی ایران. 1400; 29 (4) :837-852

URL: http://ijcm.ir/article-1-1685-fa.html


1- دانشگاه شهید باهنر
چکیده:   (896 مشاهده)
مجموعه آذرین لار در بخش مرکزی پهنه زمین درز سیستان و در فاصله 22 کیلومتری شمال زاهدان رخنمون دارد. این مجموعه دارای تنوعی از سنگ­های درونی و نیمه­نفوذی تحت اشباع تا اشباع از سیلیس شامل سینیت، نفلین سینیت، شونکینیت، لامپروفیرها و مونزونیت­ها و سنگ­های خروجی شامل توف و برش است. مونزونیت­ها به صورت توده­هایی استوک مانند، در بخش­های جنوب شرقی-جنوبی و شمالی این مجموعه رخنمون دارند. این سنگ­ها با بافت پورفیری و ترکیب کوارتز مونزونیتی و مونزونیتی، دربردارنده فلدسپارهای آلکالن، پلاژیوکلاز، کوارتز، آمفیبول و بیوتیت هستند. مقدار SiO2، Al2O3، K2O و نسبت K2O/Na2O بالا، مونزونیت­های مجموعه آذرین لار را در رده کوارتز مونزونیت­های متالومین اشباع از سیلیس، شوشونیتی و از رده سنگ­های پتاسیم­دار ایالت رومن قرار داده است. کاهش مقدار FeO، CaO، MnO، TiO2، P2O5 و MgO طی تکامل ماگما، بیانگر تفریق کانی­های مافیک، پلاژیوکلازهای کلسیم­دار، آپاتیت و تیتانیت در ماگمای مادر این سنگ­هاست. بررسی­های زمین شیمیایی نشان می­دهد که فرآیند ذوب­بخشی، در قیاس با پدیده تفریق، اثر بیشتری بر زمین­شیمی این سنگ­ها داشته است. سنگ های مونزونیتی در مجموعه آذرین لار دارای غنی­شدگی از عناصر خاکی نادر سبک و عناصر LIL (به جز Ba) و تهی شدگی از عناصر HFS (Nb، Ta، Ti و Zr) هستند. ناهنجاری­های منفی Ba، Nb، Ta و Ti و نسبت Ba/Nb بالا در این سنگ­ها ارتباط آن­ها با فرآیندهای فرورانش را نشان می­دهد. مقدار K2O و نسبت K2O/Na2O بالا، نسبت Sr/Y آداکیتی و ارتباط با جایگاه زمین­ساختی پس از برخوردی، مونزونیت­های مجموعه آذرین لار را در رده آداکیت­های قاره­ای یا آداکیت­های نوع C قرار داده است. الگوی عناصر خاکی نادر، نسبت Nb/Ta پایین و مشابه پوسته و ارتباط مثبت میان نسبت­های Sr/Y و La/Yb بیانگر ذوب پوسته قاره­ای تحتانی و دربردارنده آمفیبول است. غلظت بالای Th، ناهنجاری منفی Ce، نسبت Nb/U مشابه با رسوب­های فرورانده، غلظت بالای Ni و عدد منیزیمی (Mg#) بیش از 45 نشان می­دهد که نه تنها ماگماهایی با برخی ویژگی­های زمین شیمیایی مشابه رسوب­های فرورانده در تشکیل بخش تحتانی پوسته قاره­ای نقش داشته­اند، بلکه بخش تحتانی پوسته قاره­ای نیز ورقه­ای و جدا شده و ماگمای ناشی از ذوب این بخش، طی صعود، برخی ویژگی­های زمین شیمیایی پریدوتیت را به ارث برده­اند.    
متن کامل [PDF 7757 kb]   (352 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Barnett Z. A., Gudmundsson A., "Numerical modelling of dykes deflected into sills to form a magma chamber", Journal of Volcanology and Geothermal Research 281 (2014) 1-11. [DOI:10.1016/j.jvolgeores.2014.05.018]
5. [2] Ju W., Hou G., Hari K.R., "Dyke emplacement in the Narmada rift zone and implications for the evolution of the Deccan Traps", Geological Society, London, Special Publications, 445 (2017) 297-315. [DOI:10.1144/SP445.1]
9. [3] Liang Y., Deng J., Liu X., Wang Q., Qin C., Li Y., Yang Y., Zhou M., Jiang J., "Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism", Lithos 302 (2018) 480-495. [DOI:10.1016/j.lithos.2018.01.031]
13. [4] Falahaty S., Saiedi M., Mehvari R., Noghreyan M., Khalili M., Torabi G., "The contrasting of mineralogy of gabbroic and amphibolitic dykes in serpentinites from the ophiolite of north Naien", Iranian Journal of Crystallography and Mineralogy 19 (2011) 439-450. (In Persian)
14. [5] Torabi G., Arai S., Abbasi H., "Eocene continental dyke swarm from Central Iran (Khur area)", Petrology 22 (2014) 617-632. [DOI:10.1134/S086959111406006X]
18. [6] Torabi G., "Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): Evidence of Central-East Iranian microcontinent confining oceanic crust subduction", Island Arc 19 (2010) 277-291. [DOI:10.1111/j.1440-1738.2009.00705.x]
22. [7] Nazari G., Torabi G., "Petrogenetic processes, crystallization conditions and nature of the Lower-Oligocene calc-alkaline spessartitic lamprophyres from Kal-e-kafi area (East of Anarak, Isfahan province)", Journal of Economic Geology 9 (2017) 375-395. (In Persian with English abstract)
23. [8] Tabatabaei manesh S. M., Mahmoodabadi L., Mirlohi A. S., "Geochemistry of the Eocene volcanic rocks in the SW of Jandaq (NE of Isfahan province)", Petrology 14 (2013) 79-92. (In Persian with English abstract)
24. [9] Sargazi M., Torabi G., Morishita T., "Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of the Jandaq, Central Iran): Implications for Eastern branch of Neo-Tethys subduction", Turkish Journal of Earth Sciences 28 (2019) 558-588. [DOI:10.3906/yer-1807-45]
28. [10] Aistov L., Melnikov B., Krivyakin B., Morozov L., "Geology of the Khur Area (Central Iran)", Geological Survey of Iran, Report 20 (1984) 132 p.
29. [11] Berra F., Zanchi A., Angiolini L., Vachard D., Vezzoli G., Zanchetta S., Bergomi M., Javadi H. R., Kouhpeyma M., "The upper Palaeozoic Godar-e-Siah Complex of Jandaq: evidence and significance of a North Palaeotethyan succession in Central Iran", Journal of Asian Earth Sciences 138 (2017) 272-290. [DOI:10.1016/j.jseaes.2017.02.006]
33. [12] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
37. [13] Deer W.A., Owie R.A.H., Zussman J., "An introduction to the rock forming minerals", Longman, London (1992) 696 p.
38. [14] Berger J., Femenias O., Mercier J.C.C., Demaiffe D., "Ocean-floor hydrothermal metamorphism in the Limousin ophiolites (western French Massif Central): evidence of a rare preserved Variscan oceanic marker", Journal of Metamorphic Geology 23 (2005) 795-812. [DOI:10.1111/j.1525-1314.2005.00610.x]
42. [15] Le Bas M.J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260 (1962) 267-288. [DOI:10.2475/ajs.260.4.267]
46. [16] Leterrier J., Maury R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59 (1982) 139-154. [DOI:10.1016/0012-821X(82)90122-4]
50. [17] France L., Ildefonse B., Koepke J., Bech F., "A new method to estimate the oxidation state of basaltic series from microprobe analyses", Journal of Volcanology and Geothermal Research, 189 (2010) 340-346. [DOI:10.1016/j.jvolgeores.2009.11.023]
54. [18] Schweitzer E.L., Papike J.J., Bence A.E., "Statistical analysis of clinopyroxenes from deep-sea basalts", American Mineralogist 64 (1979) 501-513.
55. [19] Delor C.P., Rock N.M.S., "Alkaline-ultramafic lamprophyre dykes from the Vestfold Hills, Princess Elizabeth Land (East Antarctica): primitive magmas of deep mantle origin", Antarctic Science 3 (1991) 419-432. [DOI:10.1017/S0954102091000512]
59. [20] Wass S.Y., "Multiple origins of clinopyroxenes in alkali basaltic rocks", Lithos 12 (1979) 115-132. [DOI:10.1016/0024-4937(79)90043-4]
63. [21] Helz R.T., "Phase relations of basalts in their melting range at PH2O= 5 kb as a function of oxygen fugacity Part I. Mafic Phases", Journal of Petrology 14 (1973) 249-302. [DOI:10.1093/petrology/14.2.249]
67. [22] Aoki K.I., Shiba I., "Pyroxenes from lherzolite inclusions of Itinome-gata, Japan", Lithos 6 (1973) 41-51. [DOI:10.1016/0024-4937(73)90078-9]
71. [23] Nachit H., "Contribution a L'etude analytique et experimental des biotites des granitoids Applications typologiques", These de Doctorat De Ľ univesité de Bretagne accidental, (1986) 236 p.
72. [24] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Comptes Rendus Geoscience 337 (2005) 1415-1420. [DOI:10.1016/j.crte.2005.09.002]
76. [25] Anderson J.L., Barth A.P., Wooden J.L., Mazdab F., "Thermometers and thermobarometers in granitic systems", Reviews in Mineralogy and Geochemistry 69 (2008) 121-142. [DOI:10.2138/rmg.2008.69.4]
80. [26] Abdel-Rahman A.F.M., "Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas", Journal of Petrology 35 (1994) 525-541. [DOI:10.1093/petrology/35.2.525]
84. [27] Nimis P., Taylor W.R., "Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology 139 (2000) 541-554. [DOI:10.1007/s004100000156]
88. [28] Putirka K.D., "Thermometers and barometers for volcanic systems", Reviews in mineralogy and geochemistry 69 (2008) 61-120. [DOI:10.2138/rmg.2008.69.3]
92. [29] Ashchepkov I.V., André L., "Pyroxenite xenoliths in picrite basalts (Vitim Plateau): origin and differentiation of mantle melts", Russian Geology and Geophysics 43 (2002) 343-363.
93. [30] Wang W., Gasparik T., "Metasomatic clinopyroxene inclusions in diamonds from the Liaoning province, China", Geochimica et Cosmochimica Acta 65 (2001) 611-620. [DOI:10.1016/S0016-7037(00)00553-6]
97. [31] Vannucci R., Bottazzi P., Wulff-Pedersen E., Neumann E.R., "Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents", Earth and Planetary Science Letters 158 (1998) 39-51. [DOI:10.1016/S0012-821X(98)00040-5]
101. [32] McDonough W. F., Sun S. S., "The composition of the Earth", Chemical Geology 120 (1995) 223-253. [DOI:10.1016/0009-2541(94)00140-4]
105. [33] Sun S. S. and McDonough W. F., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes", Geological Society of London, Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
109. [34] Jamshidzaei A. and Torabi., "Petrology of porphyritic quartz monzodiorite stock and Eocene dykes with adakitic nature from SW of Jandaq (NE of Isfahan province); Evidence of oceanic crust subduction around the Central-East Iranian Microcontinent", Journal of Economic Geology 10 (2018) 355-379. (In Persian with English abstract)
110. [35] Shirdashtzadeh N., Torabi G., Meisel T., Arai S., Bokhari S.N.H., Samadi R. Gazel E., "Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, Central Iran): implications for the Eastern Neo-Tethys evolution", Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 273 (2014) 89-120. [DOI:10.1127/0077-7749/2014/0418]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb