Volume 33, Issue 1 (3-2025)                   www.ijcm.ir 2025, 33(1): 109-120 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Souri M, Ahmadi Khalaji A, Wang J, Esmaeili R, Ebrahimi M. The study of clinopyroxene mineral chemistry in the amphibolites from the Makran accretionary complex (southeast of Iran). www.ijcm.ir 2025; 33 (1) :109-120
URL: http://ijcm.ir/article-1-1927-en.html
1- Department of Geology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
2- Institute of Geology and Geophysics, Academy of Sciences, Beijing, China
3- Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran & Institute of Geology and Geophysics, Academy of Sciences, Beijing, China
4- Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
Abstract:   (536 Views)
The studied amphibolites are located in Hashtbandi Village, east of Minab. The Makran amphibolites form as a part of the metamorphic rocks of northern Makran ophiolitic belt, which are found in massive and orientated forms. Based on the indicator minerals, these rocks are amphibolite, epidote-garnet amphibolite and garnet-pyroxene amphibolite. Their main minerals include amphibole, garnet, plagioclase, pyroxene, epidote, quartz and sphene. Based on mineral chemistry, clinopyroxene in the epidote-garnet amphibolite and garnet-pyroxene amphibolite is calcic type and mostly in the diopside range. The studied pyroxenes are mostly magmatic and enriched in Si and are placed in the context of sub-alkaline rocks (tholeiitic and calc-alkaline). These clinopyroxenes are related to volcanic arc and based on the temperature-pressure calculations of pyroxenes, the temperature ranges between 1070 to 1130 C and the pressure is 5 to 10 kbar, which indicates the crystallization of these minerals have taken place at high temperature and medium-high pressure. Also, based on the amount of ferric ion in clinopyroxenes, they formed in the low oxygen fugacity environment.
Full-Text [PDF 819 kb]   (56 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Triboulet C., Audren C., "Controls on P-T-t deformation path from amphibole zonations during progressive metamorphism of basic rocks (estuary of the River Vilaine, South Brittany, France)", Journal of Metamorphic Geology, 6, (1988) 117-133. DOI: 10.1111/j.1525-1314.1988.tb00412.x [DOI:10.1111/j.1525-1314.1988.tb00412.x]
2. [2] Triboulet C., "The (Na-Ca) amphibole-albitechlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O 1. An empirical calibration", Journal of Metamorphic Geology, 10, (1992) 545-556. DOI: 10.1111/j.1525-1314.1992.tb00105.x [DOI:10.1111/j.1525-1314.1992.tb00105.x]
3. [3] Zenk M., Schulz B., "Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland", Mineralogical Magazine, 68, (2004) 769. DOI: 10.1180/0026461046850218 [DOI:10.1180/0026461046850218]
4. [4] Schulz B., Triboulet C., Audren C., "Microstructures and mineral chemistry in amphibolites from the western Tauern Window (Eastern Alps) and P-T-deformation paths of the Alpine greenschist-amphibolite facies metamorphism", Mineralogical Magazine, 59, (1995) 641- 659. DOI: [DOI:10.1180/minmag.1995.059.397.08]
5. [5] Evans B.W., Leake B.E., "The composition and origin of the striped amphibolites of Connemara, Irland", Petrology, 1, (1960) 337-363. [DOI:10.1093/petrology/1.3.337]
6. [6] Bucher K., Frey M., "Petrogenesis of Metamorphic Rocks" (6th edn), Springer Verlag: Berlin, (1994) 318p. [DOI:10.1007/978-3-662-03000-4]
7. [7] Winter C., "An Introduction to Igneous and Metamorphic Petrology", Prentice Hall, (2001) 697p.
8. [8] Esmaeili R., Xiao W., Griffin W. L., Moghadam H. S., Zhang Z., Ebrahimi M., Bhandari S., "Reconstructing the source and growth of the Makran accretionary complex: Constraints from detrital zircon U-Pb geochronology", Tectonics, 39(2), (2020) e2019TC005963. [DOI:10.1029/2019TC005963]
9. [9] Esmaeili R., Ao S. Shafaii Moghadam H., Zhang Z., Griffin W. L., Ebrahimi M., Bhandari S., "Amphibolites from Makran accretionary complex record Permian-Triassic Neo-Tethyan evolution", International Geology Review, 64(11), (2022) 1594-1610. [DOI:10.1080/00206814.2021.1946663]
10. [10] Souri M., Ahmadi-Khalaji A., Ebrahimi M., Esmaeili R., "Petrology and geochemistry of the amphibolites from Makran accretionary complex, Southeast of Iran", Iranian Journal of Crystallography and Mineralogy (IJCM), 31 (1), (2023) 45-58. (in Persian). DOI: 10.52547/ijcm.31.1.45 [DOI:10.52547/ijcm.31.1.45]
11. [11] Andreev A. A., Rytsk E. Yu., Velikoslavinskii S. D., Tolmacheva E. V., Bogomolov E. S., Lebedeva Y.M., Fedoseenko A. M., "Age, Composition, and Tectonic Setting of the Formation of Late Neoproterozoic (Late Baikalian) Complexes in the Kichera Zone, Baikal-Vitim Belt, Northern Baikal Area Geological, Geochronological, and Nd Isotope Data", Petrology, 30 (4), (2022) 337-368. [DOI:10.1134/S0869591122040026]
12. [12] Liotard J. M., Briot D., Boivin P., "Petrological and geochemical relationships between pyroxene megacrysts and associated alkali-basalts from Massif Central (France)", Contributions to Mineralogy and Petrology, 98 (1988) 81-90. [DOI:10.1007/BF00371912]
13. [13] Princivalle F., Tirone M., Comin-Chiaramonti P., "Clinopyroxenes from metasomatized spinel-peridotite mantle xenoliths from Nemby (Paraguay): crystal chemistry and petrological implications", Mineralogy and Petrology, 70(1), (2000) 25-35. DOI: 10.1007/s007100070011 [DOI:10.1007/s007100070011]
14. [14] Zhu Y.F., Ogsasawara Y., "Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokche NAPV UHP massif, North Kazakhstan", Journal of Asian Earth Sciences, 22(5), (2004) 517-527. [DOI:10.1016/S1367-9120(03)00091-9]
15. [15] Falahaty S., Noghreyan M., Sharifi M., Torabi G., Safaei H., Mackizadeh M.A., "Clinopyroxene application in petrogenesis identification of volcanic rocks associated with salt domes from Shurab (Southeast Qom)", Journal of Economic Geology, 8(1), (2016) 21-38. (in Persian with English abstract).
16. DOI: 10.22067/ECONG.V8I1.29480
17. [16] Mehvari R., Noghreyan M., Sharifi M., Mackizadeh M.A., Tabatabaei S.H., Torabi G., "Mineral chemistry of clinopyroxene: guidance on geo-thermobarometry and tectonomagmatic setting of Nabar volcanic rocks, South of Kashan", Journal of Economic Geology, 8(2), (2016) 493-506. (in Persian with English abstract). DOI: 10.22067/ECONG.V8I2.46817
18. [17] Le Bas M. J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science, 260 (4), (1962) 267-288. [DOI:10.2475/ajs.260.4.267]
19. [18] Leterrier J., Maurry R. C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinites of paleo-volcanic series", Earth and Planetary Science Letters, 59, (1982) 139-154. [DOI:10.1016/0012-821X(82)90122-4]
20. [19] Beccaluva L., Macciotta G., Piccardo G. B., Zeda O., "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator", Chemical Geology, 77(3), (1989) 165-182. [DOI:10.1016/0009-2541(89)90073-9]
21. [20] McCall G.J.H., "A summary of the geology of the Iranian Makran", The Tectonic and Climatic Evolution of the Arabian Sea Region, 195, (2002) 147-204. [DOI:10.1144/GSL.SP.2002.195.01.10]
22. [21] Dolati A., "Stratigraphy, structural geology and low-temperature termochronology across the Makran accretionary wedge in Iran", ETH Zurich, , Zurich, (2010) 309p. [DOI:10.3929/ethz-a-006226348]
23. [22] Samimi Namin M., "Geological Map of Minab, 1:250000 Scale", Geological Survey of Iran, (1983).
24. [23] Kretz R., "Symbols for rock-forming minerals", American Mineralogist, 68, (1983) 277-279.
25. [24] Nisbet E.G., Pearce J.A., "Clinopyroxene composition of mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 63 (1977) 161-173. [DOI:10.1007/BF00398776]
26. [25] Kushiro I., "Si-Al relation in clinopyroxenes from igneous rocks", American journal of science, 258 (8), (1960) 548-554. [DOI:10.2475/ajs.258.8.548]
27. [26] Morimoto N., "Die nomenklatur von Pyroxenen", Mineralogy and Petrology, 39, (1988) 55-76. [DOI:10.1007/BF01226262]
28. [27] Berger J., Féménias O., Coussaert N., Demaiffe D., "Magmatic garnet-bearing mafic xenoliths (Puy Beaunit, French Massif Central): PT path from crystallisation to exhumation", European Journal of Mineralogy, 17 (5), (2005) 687-701. DOI: 10.1127/0935-1221/2005/0017-0687 [DOI:10.1127/0935-1221/2005/0017-0687]
29. [28] Shirdashtzadeh N., Samadi R., "An introduction to methods of geothermometry and geobarometery", Zaminazmoon, (2010) 99p.
30. [29] Aoki, K.I., Shiba, I., "Pyroxenes from lherzolite inclusions of Itinome-gata, Japan", Lithos, 6(1), (1973) 41-51. [DOI:10.1016/0024-4937(73)90078-9]
32. [30] Helz R., "Phase reactions of basalts in their melting range at PH2O = 5kb, Part 11, Melt composition", Journal of Petrology, 17, (1973) 139- 193. [DOI:10.1093/petrology/17.2.139]
33. [31] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT estimations", GFF, 119 (1), (1997) 55-60. [DOI:10.1080/11035899709546454]
34. [32] Souri M., Ahmadi-Khalaji A., Wang J., Esmaeili R., Ebrahimi M., " Amphibole mineral chemistry of amphibolites from the Makran accretionary complex (southeast of Iran)", Kharazmi Journal of Earth Sciences, 8 (2), (2023) 236-258. (in Persian). DOI: ‎ 10.22034/KJES.2023.8.2.105432
35. [33] Ao S.J., Xiao W.J., Han C.M., Mao Q.G., Zhang J.E., "Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids", Gondwana Research, 18(2-3), (2010) 466-478. [DOI:10.1016/j.gr.2010.01.004]
36. [34] France L., Ildefonse B., Koepke J., Bech F., "A new method to estimate the oxidation state of basaltic series from microprobe analyses", Journal of Volcanology and Geothermal Research, 189 (3-4), (2010) 340-346. [DOI:10.1016/j.jvolgeores.2009.11.023]
38. [35] Moretti R., "Polymerization, basicity, oxidation state and their role in ionic modelling of silicate melts", Geophysics, 48 (4-5), (2005) 583-608. DOI: 10.4401/ag-3221 [DOI:10.4401/ag-3221]
39. [36] Gamble R.P., Taylor L.A., "Crystal/liquid partitioning in augite: effects of cooling rate", Earth and planetary science letters, 47(1), (1980) 21-33. [DOI:10.1016/0012-821X(80)90100-4]
40. [37] Schweitzer E.L., Papike J.J., Bence A.E., "Statistical analysis of clinopyroxenes from deep-sea basalts", American Mineralogist, 64(5-6), (1979) 501-513.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb