Volume 32, Issue 4 (12-2024)                   www.ijcm.ir 2024, 32(4): 683-710 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabbarzadeh Z, Siahcheshm K, Calagari A A. Investigation of Geochemistry of the major, trace and rare earth elements in the hydrothermal alteration and the mineralization zones at Tazehkand area, Northeast of Zanjan. www.ijcm.ir 2024; 32 (4) :683-710
URL: http://ijcm.ir/article-1-1898-en.html
1- Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
2- Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, IranUniversity
Abstract:   (461 Views)
The Tazekand mineralization zones, as a part of Tarom-Hashtjin metallogenic belt, is located about 45 km northeast of Zanjan city, NW Iran. Based on field study, petrography, and geochemical investigations, the lithologic composition of the intrusive rocks in the area varies from monzonite, diorite, granodiorite to gabbro, and volcanic units ranging from trachy-andesite, andesite to basaltic andesite. Delineation of diagrams of the Ishikawa alteration index (AI), chlorite-carbonate-pyrite index (CCPI) (known as alteration box plot), and the chemical alteration index (CIA) illustrated the main types and intensity of alterations in this area. Consideration of depletion and enrichment of elements by noting the enrichment factor in the alteration and mineralization zones indicates the role of high-temperature and low-pH of the altering fluids which acted as an important factor in decomposition of minerals such as plagioclase, alkali feldspar, and ferromagnesian and absence of K2O, Na2O and CaO components. The general pattern of REE distribution normalized by both chondrite and primitive mantle in altered and relatively fresh granitoid and volcanic units (as host rocks), shows a conspicuous negative slope and enrichment in LREE and large ion lithospheric elements (LILE) and depletion in HREE and high field strength elements (HFSE) during the alteration processes. Ce, Eu and Pr anomalies (Eu/Eu*, Ce/Ce*, Pr/Pr*) were investigated in ores along with fresh and altered host rocks. What can be inferred from these studies are that the changes in the behavior of rare earth elements as well as their normalized distribution pattern for each type of alteration has its own peculiar physicochemical conditions influenced by the action of multiple injections of hydrothermal fluids during both hypogene and supergene processes. The supergene processes compared to hypogene processes played very important and prominent role in development and evolution of the alteration zones in the Tazekand mineralization area
Full-Text [PDF 4583 kb]   (146 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Arndt N., Ganino C., "Metals and Society: an Introduction to Economic Geology", Springer, (2012)160p. [DOI:10.1007/978-3-642-22996-1]
2. [2] Pirajno F., "Hydrothermal Processes and Mineral Systems", Springer, (2009) 1250p. [DOI:10.1007/978-1-4020-8613-7]
3. [3] Large R.R., Gemmell J.B., Paulick H., Huston D., "The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with VHMS deposit", Economic Geology, 96 (2001) 957-972. [DOI:10.2113/gsecongeo.96.5.957]
4. [4] White N.C., Hedenquist J.W., "Epithermal gold deposits: styles, characteristics and Exploration", Society of Economic Geologists, Newsletter, 23 (1995) 9-13. [DOI:10.5382/SEGnews.1995-23.fea]
5. [5] Warren I., Simmons S.F., and Mauk J.L., "Whole- rock geochemical techniques for evaluating hydrothermal alteration, mass changes, and compositional with epithermal Au-Ag mineralization", Economic Geology, 102 (2007) 923-948. [DOI:10.2113/gsecongeo.102.5.923]
6. [6] Gemmell J.B., "Hydrothermal alteration associated with the Gosong epithermal Au-Ag deposit Halmahera, Indonesia; Mineralogy, geochemistry, and exploration implications", Economic Geology, 102 (2007) 893-922. [DOI:10.2113/gsecongeo.102.5.893]
7. [7] Nabatian G., Ghaderi M., Corfu F., Neubauer F., Bernroider M., Prokofiev V., Honarmand M., "Geology, alteration, age andorigin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran", Mineralium Deposita, 49 (2014) 217-234. [DOI:10.1007/s00126-013-0484-1]
8. [8] Aghazadeh M., Castro A., Rashidnejad Omran N., Emami M.H., Moinvaziri H., Badrzadeh Z., "The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran", J. Asian Earth Sci, 38 (2010) 199-219. [DOI:10.1016/j.jseaes.2010.01.002]
9. [9] Ajali N., Torkian A., Tale Fazel E., "Rasht abad Copper-Gold intermediate sulfidation epithermal deposit (north of Zanjan): Evidence of mineralization, Fluid inclusion and stable isotope C-O (in Persian)", Iranian Journal of Crystallography and Mineralogy, 29 (2021) 207-220. [DOI:10.52547/ijcm.29.1.207]
10. [10] Kouhestani H., Mokhtari M.A.A., KezhangQ., Junxing Z., "Fluid inclusion and stable isotopeconstraints on ore genesis of the Zajkanepithermal base metal deposit, Tarom-Hashtjinmetallogenic belt,NW Iran", Ore Geology Reviews, Vol:109 (2019) p:564-584. [DOI:10.1016/j.oregeorev.2019.05.014]
11. [11] Yasami N., Ghaderi M., Madanipour S., Taghilou B.,"Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran", Ore Geology Reviews, 86 (2017) 212-224. [DOI:10.1016/j.oregeorev.2017.01.028]
12. [12] Kouhestani H., Azimzadeh A.M., Mokhtari, M.A.A., Ebrahimi M., "Mineralization and fluid evolution of epithermal base metalveins from the Aqkand deposit, NW Iran. Neues Jahrbuch für Mineralogie Abhandlungen", Journal of Mineralogy and Geochemistry, 194 (2017) 139-155. [DOI:10.1127/njma/2017/0036]
13. [13] Mehrabi B., Ghasemi Siani M., Goldfarb R., Azizi H., Ganerod M., Marsh E.E., "Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulloje district, NW Iran", Ore Geology Reviews 78 (2016) 41-57. [DOI:10.1016/j.oregeorev.2016.03.016]
14. [14] Amini B., "Geological map of IRAN 1:100000 Tarom (in Persian)", Geological Survey of Iran (2000).
15. [15] Whitney, D.L. and Evans, B.W.,"Abbreviations for names of rock-formingminerals", American Mineralogist, 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
16. [16] Ishikawa Y., Sawaguchi T., Iwaya S., Horiuchi M., "Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos", Mining Geology, 26 (1976) 105-117.
17. [17] Fedo C.M.,Nesbitt P., Young G.M., "Unraveling the effect of potassium metasomatismin sedimentary rocks and paleosols, withimplications for paleoweathering conditions andprovenance", Geology 23(1995) 363-381. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 [DOI:10.1130/0091-7613(1995)0232.3.CO;2]
18. [18] Malpas J., Duzgoren-Aydin N.D., Aydin A., "Behaviour of chemical elements duringweathering of pyroclastic rocks. Hong Kong", Environment International 26 (2001) 359-368. [DOI:10.1016/S0160-4120(01)00013-7]
19. [19] Rollinson HR., "Using Geochemical Data:Evaluation, Presentation, Interpretation", Longman Scientific and Technical, New York (1993) 352.
20. [20] Fulignati P., Gincada A.,Sbrana A., "Rare earth element (REE) behavior in the alteration facies of the active hydrothermal system of volcano (Aeolian magmatic islands, Italy)", Journal ofVolcanology and Geothermal Research, 88 (1999) 325-342. [DOI:10.1016/S0377-0273(98)00117-6]
21. [21] Karakaya N., "REE and HFS element behaviour in the alteration facies of the Erenler Da56Volcanics (Konya, Turkey) and kaolinite occurrence", Journal of Geochemical Exploration, 101 (2009) 185-208. [DOI:10.1016/j.gexplo.2008.07.001]
22. [22] Mason B., Moore C.B., "Principle of geochemistry", John Wiley, New York (1984) 344 p.
23. [23] Arslan M., Kadir S., Abdioglu E., Kolayli H.,"Origin and formation of Kaolin Minerals in Saprolite of Tertiary Alkaline volcanic rocks. Eastern pontides, NE Turkey", Clay Minerals, 41 (2007) 597-617. [DOI:10.1180/0009855064120208]
24. [24] Dill H. G., Bosse H. R., Kassbohm J.,"Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central America Cordillera (Werstern Salvador)", Economic Geology, 95 (2000) 517-538. [DOI:10.2113/gsecongeo.95.3.517]
25. [25] Koppi A. J., Edis R., Foeld D. J., Geering H. R., KlessaD. A., Cockayne D. J. H.,"REE trends and Ce-U- Mn associations in weathered rock from Koongarra, northern territory, Australia", Geochimica et Cosmochimica Acta, 60 (1996) 1695-1707. [DOI:10.1016/0016-7037(96)00047-6]
26. [26] Abedini A., Calagari A. A., "Geochemical characteristics of the Arabshah kaolin deposit, Takab geothermal field, NW Iran", Arabian Journal of Geosciences, 9 (2016) 1-16. [DOI:10.1007/s12517-016-2572-x]
27. [27] Simmons S.F., White N.C., John D., "Geological characteristics of epithermal preciousand base metal deposits", Economic Geology 100TH ANNIVERSARY VOLUME, (2005) 485N522. [DOI:10.5382/AV100.16]
28. [28] Plank T., Langmuir C. H., "The chemical composition of subducting sediment and its consequence for the crust and mantle", Chemical Geology, 145 (1988) 325-394. [DOI:10.1016/S0009-2541(97)00150-2]
29. [29] White N.C., Leake M.J., McCaughey S.N., Parris B.W., "Epithermal gold deposits of thesouthwest Pacific", Journal of Geochemical Exploration 54 (1995) 87-136. [DOI:10.1016/0375-6742(95)00027-6]
30. [30] Heald P., Foley N. K., Hayba D. O.,"Comparative anatomy of volcanic - hostedepithermal deposite: acid - sulfate and adularia -sericite type", Economic Geology, 82 (1987) 1-26. [DOI:10.2113/gsecongeo.82.1.1]
31. [31] Jiang, S.Y., Yang, J.H., Ling, H.F., Feng, H.Z., Chen, Y.Q., Chen, J.,"Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China". Progress in Natural Science (Special issue), (2004)18-24 [DOI:10.1080/10020070312331344440]
32. [32] Salvi S., Williams-Jones A. E., "The role of hydrothermal processe in concentrating high field strength elements in the Strange Lake peralkaline complex, northeastern Canada", Geochimica et Cosmochimica Acta, 60 (1996) 1917-1932. [DOI:10.1016/0016-7037(96)00071-3]
33. [33] Nesbitt H. W., Wilson R. E., "Recent chemicalweathering of basalts", American Journalof Science, 292 (1992) 740-777. [DOI:10.2475/ajs.292.10.740]
34. [34] Marques J.J., Schulze D., Curi N., Mertzman S.,"Major element geochemistry and geomorphic relationships in Brazilian Cerrado soils", Geoderma, 119 (2004) 179 - 195 [DOI:10.1016/S0016-7061(03)00260-X]
35. [35] Price B.J., "Minor element in pyrites from the Smithers Map Area, British Columbia and Exploration Applications of Minor element Studies (doctoral dissertation)". Vancouver: Columbia University, (1972).
36. [36] Zhou Jiaxi, Huang Zhilong, Zhou Guofu, Li Xiaobiao, Ding Wei, Bao Guangping, "Trace elements and rare earth elements of Sulfide minerals in the Tianqiao Pb-Zn ore deposit, Guizhou province, China". Acta Geologica Sinica, 85(2011) 189-199. [DOI:10.1111/j.1755-6724.2011.00389.x]
37. [37] Muchangos A., "The mobility of rare-earth and other elements in the process of alteration of rhyolitic rocks to bentonite (Lebombo Volcanic Mountainous Chain, Mozambique)", Journal of Geochemical exploration, 88 (2006) 300-303. [DOI:10.1016/j.gexplo.2005.08.061]
38. [38] Panahi A., Young G. M., Rainbird R. H., "Behavior of major and trace elements (includingREE) during Paleoproterozoic pedogenesis anddiagenetic alteration of an Archean granite nearVill Marie, Quebec, Canada" ,Geochimica et Cosmochimica Acta, 64 (2000) 2199-2220. [DOI:10.1016/S0016-7037(99)00420-2]
39. [39] Barnett M.O., Jardine P.M., Brooks S.C., Selim H.M., "Adsorption and transport of uranium (VI) in subsurface media", Soil Science Society of America Journal, 64 (2000) 908-917. [DOI:10.2136/sssaj2000.643908x]
40. [40] Wood S. A., "The aqueous geochemistry of the rare earth elements and yttrium: 2. Theoretical prediction of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure",Chemical Geology, 88 (1990) 99-125. [DOI:10.1016/0009-2541(90)90106-H]
41. [41] Haas J. R., Shock E. L., Sassani D. C., "Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures", Geochimica Cosmochimica Acta, 59 (1995) 4329-4350. [DOI:10.1016/0016-7037(95)00314-P]
42. [42] Abdioğlu E., Arslan M., Kadir S., Temizel İ., "Alteration mineralogy, lithochemistry and stable isotope geochemistry of the Murgul (Artvin, NE Turkey) volcanic hosted massive sulfide deposit: implications for the alteration age and ore forming fluids", Ore Geology Reviews, 66 (2015) 219-242. [DOI:10.1016/j.oregeorev.2014.10.017]
43. [43] Bi X.W., Hu, R.Z., Peng, J.T., Wu K.X., "REE and HFSE geochemical characteristics of pyrites in Yao҆ a gold deposit: tracing ore forming fluid signatures. Bulletin of Mineralogy", Petrology and Geochemistry, 23 (2004) 1-4 (in Chinese with English abstract).
44. [44] Boynton W.V., "Cosmochemistry of the rareearth elements: meteorite studies. In: Henderson,P. (Ed.), Rare Earth Element Geochemistry", Elsevier, Amsterdam, (1984) 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
45. [45] McDonough W. F., S. S. Sun., "Thecomposition of the Earth", Chem. Geol., 120 (1995) 223-253. [DOI:10.1016/0009-2541(94)00140-4]
46. [46] Wilson M., "Igneous petrogenesis: A global tectonic approach", Unwin Hymen, London, (1989) 466. [DOI:10.1007/978-1-4020-6788-4]
47. [47] Chen W., Shu L., Santosh M., "Late Paleozoic post-collisional magmatism in the Eastern Tianshan Belt, Northwest China: New insights from geochemistry, geochronology and petrology of bimodal volcanic rocks", Lithos, 127 (2011) 581-598. [DOI:10.1016/j.lithos.2011.06.008]
48. [48] McLennan S.M., "Rare earth elements in Sedimentary rocks. Influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.)", Geochemistry and mineralogy of rareearth element s. Reviews in Mineralogy, 21 (1989) 169-200. [DOI:10.1515/9781501509032-010]
49. [49] Taylor Y, McLennan S. M., "The continental crust: Its composition and evolution", 1st ed.Oxford, UK: Blackwell (1985).
50. [50] Bau, M., Dulski, P.,"Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa". Precambrian Res, 79 (1996).37-55. [DOI:10.1016/0301-9268(95)00087-9]
51. [51] Giese U., Bau M., Dulski P., "Trace element availability during experimental leaching of midocean ridge basalt at 70°C', Terra Nova, 5 (1993) 54.
52. [52] Giese U., Bau M., "Trace element accessibility in mid-ocean ridge and ocean island basalt: an experimental approach", Mineralogical Magazin, 58A (1994) 329-330. [DOI:10.1180/minmag.1994.58A.1.173]
53. [53] Sverjensky D. A., "Europium redox equilibria in aqueous sotution", Earth Planet Sci Lett, 67 (1984) 70-78. [DOI:10.1016/0012-821X(84)90039-6]
54. [54] Maiza P. J., Pieroni D., Marfil S. A.,"Geochemistry of hydrothermal Kaolins in the SEarea of Los Menucos, Province of Rio Negro,Argentina", Clay Odyssey Elsevier, Amsterdam (2001) 123-130. [DOI:10.1016/B978-044450945-1/50105-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb