Volume 31, Issue 3 (10-2023)                   www.ijcm.ir 2023, 31(3): 591-602 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

saiedi M, ghazi M E, izadifard M. Synthesis and study of structural, optical and magnetic properties of ZnO/Fe2O3 nanocomposites. www.ijcm.ir 2023; 31 (3) :591-602
URL: http://ijcm.ir/article-1-1796-en.html
1- Physics Department, Shahrood University of Technology, Shahrood, Iran
Abstract:   (678 Views)
In this study, ZnO, α-Fe2O3 and ZnO/Fe2O3 nanocomposites powders with weight ratios of (1:0/.5), (1: 1) and (1: 2) were prepared using hydrothermal method and their structural, optical and magnetic properties were investigated. The results obtained from analysis of the XRD patterns confirmed formation of the hexagonal structures for ZnO and Fe2O3. The absorption spectra of the synthesized samples showed that the absorption in the visible region increases for ZnO/Fe2O3 nanocomposite and its band gap value reduces (increases) in comparison to the zinc oxide (iron oxide). FESEM images showed that Fe2O3 spherical nanoparticles are located on the surface of the ZnO nano-sheets .The results obtained from magnetic studies by VSM revealed that ZnO has a diamagnetic property and α-Fe2O3 shows soft ferromagnetic behavior and for the nanocomposites, the magnetization values increase with increasing the Fe2O3 concentration. In general, the results show that the particle size, optical property and magnetic property of the ZnO/Fe2O3 nanocomposites strongly depends on the concentration of Fe2O3.
Full-Text [PDF 1310 kb]   (187 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Theerthagiri J., et al., "A review on ZnO nanostructured materials: energy, environmental and biological applications", Nanotechnology, 30(39), p.392001 [DOI:10.1088/1361-6528/ab268a]
2. [2] Zhang J., et al., "α‐Fe2O3 nanospindles loaded with ZnO nanocrystals: Synthesis and improved gas sensing performance Crystal Research and Technology,. 49(7) (2014) pp. 452-459. [DOI:10.1002/crat.201300397]
3. [3] Rahmah M.I., et al., "Synthesis and study photocatalytic activity of Fe2O3 doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15) (2015), pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
4. [4] Coleman V.A., et al, "Basic properties and applications of ZnO. In Zinc oxide bulk, thin films and nanostructures", Elsevier Science Ltd (2006) pp.1-20. [DOI:10.1016/B978-008044722-3/50001-4]
5. [5] Shekofteh-Gohari M., et al., "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
6. [6] Sharma D.K., et al. "A review on ZnO: Fundamental properties and applications", Elsevier,49 (8), (2022) pp.3028-3035. [DOI:10.1016/j.matpr.2020.10.238]
7. [7] Yu-Kuei Hsu et al., "Novel ZnO/Fe2O3 Core-Shell Nanowires for Photoelectrochemical Water Splitting", ACS Applied Materials & Interfaces 7 (25),pp. (2015) 14157-14162 . [DOI:10.1021/acsami.5b03921]
8. [8] Khezami L.,et al., "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
9. [9] Zhu W., et al., "Atomic structural evolution during the reduction of α-Fe2O3 nanowires", The Journal of Physical Chemistry C, 120(27), (2016) pp.14854-14862. [DOI:10.1021/acs.jpcc.6b02033]
10. [10] Seabra A.B., et al., "Antimicrobial applications of superparamagnetic iron oxide nanoparticles: Perspectives and challenges. In Nanostructures for Antimicrobial Therapy", Elsevier, pp. 531-550 (2017). [DOI:10.1016/B978-0-323-46152-8.00024-X]
11. [11] Dimopoulos T., "All-oxide solar cells", The future of semiconductor oxides in next-generation solar cells (2018) pp.439-480. [DOI:10.1016/B978-0-12-811165-9.00011-9]
12. [12] Taghizadeh S.M., et al. "New Perspectives on Iron-Based Nanostructures", Processes, 8(9), (2020) p.1128. [DOI:10.3390/pr8091128]
13. [13] Li L., et al., "The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode", Journal of Alloys and Compounds, 696, (2017) pp.980-987. [DOI:10.1016/j.jallcom.2016.12.101]
14. [14] Shekofteh-Gohari et al. "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
15. [15] da Trindade L.G., et al. "Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications", J Mater Sci 55, (2018) pp. 2923-2936. [DOI:10.1007/s10853-019-04135-x]
16. [16] Sett A., Dey et al. "ZnO/gamma -Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
17. [17] Dhiman P., et al. "Rapid visible and solar photocatalytic Cr (VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO-Fe2O3 nano heterojunctions: mechanism elucidation", Ceramics International,. 46(8), (2020) pp. 12255-12268. [DOI:10.1016/j.ceramint.2020.01.275]
18. [18] Bu X., et al. "Facile synthesis of flower-like ZnO@ Fe2O3 hierarchical nanostructures with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate", Materials Letters, 219 (2018) pp.33-36. [DOI:10.1016/j.matlet.2018.02.066]
19. [20] Rahmah M.I., et al. "Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15), (2021) pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
20. [21] Achouri F., et al. "Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures", Journal of Physics and Chemistry of Solids, 75(10) (2014) pp.1081-1087. [DOI:10.1016/j.jpcs.2014.05.013]
21. [22] Ordon K., "Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications (Doctoral dissertation, Le Mans) (2018).
22. [23] Zaman F.U., et al. "MOFs Derived Hetero-ZnO/Fe2O3 Nanoflowers with Enhanced Photocatalytic Performance towards Efficient Degradation of Organic Dyes", Nanomaterials (Basel, Switzerland), 11(12) (2021). [DOI:10.3390/nano11123239]
23. [24] Yang Y., et al. "The study on degradation and separation of RhB under UV light by magnetically ZnO/Fe2O3 nanoparticles. physica status solidi (a), 215(23) (2018) pp.1800416. [DOI:10.1002/pssa.201800416]
24. [25] Khezami L., et al. "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe 2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
25. [26] Van Duy et al., "Facile Hydrothermal Synthesis of Two-Dimensional Porous ZnO Nanosheets for Highly Sensitive Ethanol Sensor". Journal of Nanomaterials (2019). [DOI:10.1155/2019/4867909]
26. [27] Noruozi A. et al. "Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue", Chemical Physics Letters, 752 (2020) pp.137587. [DOI:10.1016/j.cplett.2020.137587]
27. [28] Mirzaie R.A., et al "Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures", Materials Chemistry and Physics, 133(1) (2012) pp.311-316. [DOI:10.1016/j.matchemphys.2012.01.029]
28. [29] Yadav R.S., et al., "Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method", Journal of Physics and Chemistry of Solids, 110 (2017) pp.87-99. [DOI:10.1016/j.jpcs.2017.05.029]
29. [30] Sett A., et al. "ZnO/gamma-Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
30. [31] Shaohua Shen et al. "Surface Tuning for Promoted Charge Transfer in Hematite Nanorod Arrays as Water-Splitting Photoanodes. Nano Res", 5(5) (2012) pp. 327-336. [DOI:10.1007/s12274-012-0213-6]
31. [32] Długosz O., et al "Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes", International Journal of Environmental Science and Technology, 18(3) (2021) pp.561-574. [DOI:10.1007/s13762-020-02852-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb