دوره 31، شماره 3 - ( 7-1402 )                   جلد 31 شماره 3 صفحات 602-591 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

saiedi M, ghazi M E, izadifard M. Synthesis and study of structural, optical and magnetic properties of ZnO/Fe2O3 nanocomposites. www.ijcm.ir 2023; 31 (3) :591-602
URL: http://ijcm.ir/article-1-1796-fa.html
سعیدی مائده، قاضی محمد ابراهیم، ایزدی فرد مرتضی. سنتز و بررسی ویژگی‌های خواص ساختاری، نوری و مغناطیسی نانوکامپوزیت‌های ZnO/Fe2O3. مجله بلورشناسی و کانی شناسی ایران. 1402; 31 (3) :591-602

URL: http://ijcm.ir/article-1-1796-fa.html


1- دانشکده فیزیک و مهندسی هسته‌ای دانشگاه صنعتی شاهرود، شاهرود، ایران
چکیده:   (475 مشاهده)
در این پژوهش، نمونه‌های پودری ZnO، α-Fe2O3 و نانوکامپوزیت‌های ZnO/Fe2O3 با نسبت وزنی  ZnO به  Fe2O3  برابر با  (5/0: 1)، (1:1) و (1:2) به روش گرمابی تهیه و سپس ویژگی­های ساختاری­، نوری و مغناطیسی آنها بررسی شد. نتایج بررسی الگوهای پراش پرتو (XRD) نمونه­‌ها تشکیل ساختار ششگوشی اکسید روی و اکسید آهن را تائید کردند. بررسی طیف جذبی نمونه­‌های سنتز شده نشان داد که نانوکامپوزیت ZnO/Fe2O3 جذب را در ناحیه مرئی افزایش داده و از این رو مقدار گاف نواری آن نسبت به اکسید روی کاهش و نسبت به اکسید آهن افزایش می ‌یابد. تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) نشان دادند که نانوذرات کروی Fe2O3 روی سطح نانوورقه­های ZnO قرار گرفته‌اند. نتایج مغناطیس سنج نمونه ارتعاشی (VSM) نشان دادند که ZnO خالص دارای ویژگی­ غالب دیامغناطیسی و -Fe2O3α دارای ویژگی­های فرومغناطیس نرم هستند و در نانوکامپوزیت‌های تهیه شده، با افزایش غلظت Fe2O3 مقدار مغناطش افزایش می‌یابد. به­طور کلی نتایج این تحلیل­ها نشان دادند که اندازه ذرات، ویژگی­های نوری و ویژگی­های مغناطیسی نانوکامپوزیت­های ZnO/Fe2O3 به شدت به غلظت Fe2O3-α بستگی دارند.     
متن کامل [PDF 2261 kb]   (82 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Theerthagiri J., et al., "A review on ZnO nanostructured materials: energy, environmental and biological applications", Nanotechnology, 30(39), p.392001 [DOI:10.1088/1361-6528/ab268a]
2. [2] Zhang J., et al., "α‐Fe2O3 nanospindles loaded with ZnO nanocrystals: Synthesis and improved gas sensing performance Crystal Research and Technology,. 49(7) (2014) pp. 452-459. [DOI:10.1002/crat.201300397]
3. [3] Rahmah M.I., et al., "Synthesis and study photocatalytic activity of Fe2O3 doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15) (2015), pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
4. [4] Coleman V.A., et al, "Basic properties and applications of ZnO. In Zinc oxide bulk, thin films and nanostructures", Elsevier Science Ltd (2006) pp.1-20. [DOI:10.1016/B978-008044722-3/50001-4]
5. [5] Shekofteh-Gohari M., et al., "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
6. [6] Sharma D.K., et al. "A review on ZnO: Fundamental properties and applications", Elsevier,49 (8), (2022) pp.3028-3035. [DOI:10.1016/j.matpr.2020.10.238]
7. [7] Yu-Kuei Hsu et al., "Novel ZnO/Fe2O3 Core-Shell Nanowires for Photoelectrochemical Water Splitting", ACS Applied Materials & Interfaces 7 (25),pp. (2015) 14157-14162 . [DOI:10.1021/acsami.5b03921]
8. [8] Khezami L.,et al., "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
9. [9] Zhu W., et al., "Atomic structural evolution during the reduction of α-Fe2O3 nanowires", The Journal of Physical Chemistry C, 120(27), (2016) pp.14854-14862. [DOI:10.1021/acs.jpcc.6b02033]
10. [10] Seabra A.B., et al., "Antimicrobial applications of superparamagnetic iron oxide nanoparticles: Perspectives and challenges. In Nanostructures for Antimicrobial Therapy", Elsevier, pp. 531-550 (2017). [DOI:10.1016/B978-0-323-46152-8.00024-X]
11. [11] Dimopoulos T., "All-oxide solar cells", The future of semiconductor oxides in next-generation solar cells (2018) pp.439-480. [DOI:10.1016/B978-0-12-811165-9.00011-9]
12. [12] Taghizadeh S.M., et al. "New Perspectives on Iron-Based Nanostructures", Processes, 8(9), (2020) p.1128. [DOI:10.3390/pr8091128]
13. [13] Li L., et al., "The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode", Journal of Alloys and Compounds, 696, (2017) pp.980-987. [DOI:10.1016/j.jallcom.2016.12.101]
14. [14] Shekofteh-Gohari et al. "Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review", Critical reviews in environmental science and technology, 48(10-12) (2018) pp.806-857. [DOI:10.1080/10643389.2018.1487227]
15. [15] da Trindade L.G., et al. "Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications", J Mater Sci 55, (2018) pp. 2923-2936. [DOI:10.1007/s10853-019-04135-x]
16. [16] Sett A., Dey et al. "ZnO/gamma -Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
17. [17] Dhiman P., et al. "Rapid visible and solar photocatalytic Cr (VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO-Fe2O3 nano heterojunctions: mechanism elucidation", Ceramics International,. 46(8), (2020) pp. 12255-12268. [DOI:10.1016/j.ceramint.2020.01.275]
18. [18] Bu X., et al. "Facile synthesis of flower-like ZnO@ Fe2O3 hierarchical nanostructures with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate", Materials Letters, 219 (2018) pp.33-36. [DOI:10.1016/j.matlet.2018.02.066]
19. [20] Rahmah M.I., et al. "Synthesis and study photocatalytic activity of Fe2O3-doped ZnO nanostructure under visible light irradiation", International Journal of Environmental Analytical Chemistry, 101(15), (2021) pp.2598-2611. [DOI:10.1080/03067319.2019.1699549]
20. [21] Achouri F., et al. "Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures", Journal of Physics and Chemistry of Solids, 75(10) (2014) pp.1081-1087. [DOI:10.1016/j.jpcs.2014.05.013]
21. [22] Ordon K., "Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications (Doctoral dissertation, Le Mans) (2018).
22. [23] Zaman F.U., et al. "MOFs Derived Hetero-ZnO/Fe2O3 Nanoflowers with Enhanced Photocatalytic Performance towards Efficient Degradation of Organic Dyes", Nanomaterials (Basel, Switzerland), 11(12) (2021). [DOI:10.3390/nano11123239]
23. [24] Yang Y., et al. "The study on degradation and separation of RhB under UV light by magnetically ZnO/Fe2O3 nanoparticles. physica status solidi (a), 215(23) (2018) pp.1800416. [DOI:10.1002/pssa.201800416]
24. [25] Khezami L., et al. "Dependence of phase distribution and magnetic properties of milled and annealed ZnO/Fe 2O3 nanostructures as efficient adsorbents of heavy metals", Journal of Materials Science: Materials in Electronics, 30(10) (2019) pp.9683-9694. [DOI:10.1007/s10854-019-01303-2]
25. [26] Van Duy et al., "Facile Hydrothermal Synthesis of Two-Dimensional Porous ZnO Nanosheets for Highly Sensitive Ethanol Sensor". Journal of Nanomaterials (2019). [DOI:10.1155/2019/4867909]
26. [27] Noruozi A. et al. "Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparticles in the photodegradation and mineralization of methylene blue", Chemical Physics Letters, 752 (2020) pp.137587. [DOI:10.1016/j.cplett.2020.137587]
27. [28] Mirzaie R.A., et al "Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures", Materials Chemistry and Physics, 133(1) (2012) pp.311-316. [DOI:10.1016/j.matchemphys.2012.01.029]
28. [29] Yadav R.S., et al., "Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method", Journal of Physics and Chemistry of Solids, 110 (2017) pp.87-99. [DOI:10.1016/j.jpcs.2017.05.029]
29. [30] Sett A., et al. "ZnO/gamma-Fe2O3 Heterostructure Toward High-Performance Acetone Sensing", IEEE Sensors Journal, 19(19), (2019) pp.8576-8582. [DOI:10.1109/JSEN.2019.2921421]
30. [31] Shaohua Shen et al. "Surface Tuning for Promoted Charge Transfer in Hematite Nanorod Arrays as Water-Splitting Photoanodes. Nano Res", 5(5) (2012) pp. 327-336. [DOI:10.1007/s12274-012-0213-6]
31. [32] Długosz O., et al "Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes", International Journal of Environmental Science and Technology, 18(3) (2021) pp.561-574. [DOI:10.1007/s13762-020-02852-4]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb