Volume 28, Issue 4 (12-2020)                   www.ijcm.ir 2020, 28(4): 907-920 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zirjanizadeh, Samiee. Evidences of epithermal mineralization at Bidook gold vein deposit (east of Iran), based on geology, alteration, mineralization, geochemistry and thermometery data.. www.ijcm.ir 2020; 28 (4) :907-920
URL: http://ijcm.ir/article-1-1557-en.html
Abstract:   (1143 Views)
Bidook deposit is located about 10 km southeast of Bajistan, Khorasan Razavi Province, in the northern part of Lut Block. Geology of the area includes andesite and pyroclastic units. Alterations in these rock units include propylitic, silicic and argillic. Mineralizations were formed as veins of quartz sulfide  that are cut through andesitic and pyroclastic rocks. These veins have massive texture and pyrite is the primary sulfide mineral that is often weathered to iron oxides, so veins have orange to yellow appearance. Litho-geochemical studies of alteration and mineralization veins revealed anomalies of gold element (between 3 to 201 mg/t and even in one of samples it is up to 1173 mg/t).  One type of fluid inclusion as liquied rich, on the basis of fluid inclusion assemblage in quartz at quartz- fe oxide veins, has been identified. Thermometric analysis on two-phase primary (L+V) fluid inclusions shows that temperature of mineralization ranges between 202 ͦ C to 273 ͦ C and salinity in the range 15.76 to 19.99 wt% of NaCl equivalent. Host rock composition, mineralogy, formation temperature, alterations and geochemistry data of the Bidook area make it similar to epithermal deposits.
Full-Text [PDF 4085 kb]   (377 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Karimpour M.H., Zaw K, Huston D.L.,"S-C-O isotopes, fluid inclusion microthermometry, and the genesis of ore bearing fluids at Qaleh-Zari Fe-oxide Cu-Au-Ag mine, Iran", Journal of Sciences, Islamic Republic of Iran, 16 (2005) 153-168.
2. [2] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of central and eastern Iran and western Pakistan", Economic Geology 10 (2012) 295-332. [DOI:10.2113/econgeo.107.2.295]
3. [3] Malekzadeh Shafaroudi, A., Karimpour M.H., Stern C.R., "The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies", Ore Geology Reviews 65(2) (2015) 522-544. [DOI:10.1016/j.oregeorev.2014.04.015]
4. [4] Malekzadeh Shafaroudi A., Karimpour M.H., Mazaheri S.A., "Rb-Sr and Sm-Nd isotopic composition and petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (north of Hanich), east of Iran. (in Persian)", Iranian Journal of Crystallography and Mineralogy18(2) (2010) 15-32.
5. [5] Arjmandzadeh R., Karimpour M.H., Mazaheri S.A., Santos J.F., Medina J.M., Homam S.M., "Sr-Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, eastern Iran) ", Journal of Asian Earth Sciences 14 (2011) 283-296. [DOI:10.1016/j.jseaes.2011.02.014]
6. [6] Abdi M. and Karimpour M.H., "Geological alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand (in Persian)" Journal of Economic Geology 4(1) (2012) 77-107.
7. [7] Karimpour M, H., Malekzadeh Shafaroudi A., Mazaheri SA. A., Heydariyan M.R., "Magmatism and mineralization types of copper, gold, tin, tungsten in Lut Block", Fifteenth Congress of Crystallography and Mineralogy of Iran (2006) 604-598.
8. [8] Zirjani zadeh S., Karimpour M.H., Ebrahimi KH., "Mineralogy, geochemistry and petrology of intrusive bodies and volcanic rocks in northwest of Gonabad (in persian)", Iranian Journal of Crystallography and Mineralogy 23 (4) (2016) 789-802.
9. [9] Karimpour M. H., Stern C. R., Farmer L., Saadat S., Malekzadeh A., "Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran", Geopersia 1(1) (2011)19-36.
10. [10] Karimpour M.H., Malekzadeh Shafaroudi A., Stern C.R., Farmer L., "Petrogenesis of Granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristic, and important occurrence of Tertiary mineralization within the Lut Block, eastern Iran (in Persian)", Economic Geology of Iran 4(1) (2012)1-27.
11. [11] Jafari M., Azmi H., Sadid S., " Systematic geochemical exploration of Gonabad. Scale 1:25000", Geological Survey & Mineral Explorations of Iran (2017) 235p.
12. [12] Bodnar R. J. "Revised equation and table for determining the freezing point depression of H2O-NaCl solutions", Geochimica et Cosmochimica Act 12 (1993) 683-684 [DOI:10.1016/0016-7037(93)90378-A]
13. [13] Brown P.E., Lamb W.M., "P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies", Geochim. Acta, 53(1989) 1209-1221. [DOI:10.1016/0016-7037(89)90057-4]
14. [14] Ashoori A.R., Karimpour M.H. and Saadat S., "Geological map of Bajestan. scale: 1:100000", Geological Survey of Iran (2005).
15. [15] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist, 95 (1) (2010) 185-187. [DOI:10.2138/am.2010.3371]
16. [16] Rowland J.V., and Simmons S.F., " Hydrologic, magmatic and tectonic controls on hydrothermal flow, Taupo Volcanic zone, New Zealand: Implication for the formation of epithermal vein deposits" Economic geology 107(3) (2012) 427- 457. [DOI:10.2113/econgeo.107.3.427]
17. [17] Yilnaz H., Oyman T., Arehart G.B., Co;akoglu A.R., and Billor Z., "Low- sulfidation type Au-Ag mineralization at Bergama, Izmir, Turkey", Ore Geology Reviews, 32(1-2) (2007) 81- 124. [DOI:10.1016/j.oregeorev.2006.10.007]
18. [18] Shepherd TJ, Rankin AH, Alderton DHM., "A practical guide to fluid inclusion", Blackie (1985) 239 p.
19. [19] Roedder E., "Fluid inclusions. Reviews in Mineralogy. Mineral", Society of America, Washington 12 (984) 644p.
20. [20] Goldstein R.H., Reynolds, T.J., "Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology. SEPM, Tulsa Oklahoma", Short Course 31(1994) 199p. [DOI:10.2110/scn.94.31]
21. [21] Monacada D., Mutchler S., Niebto A., Reynolds T.J., Rimstidt J.D., and Bodnar R.J., "Mineral texture and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato Mexico: Application to exploration", Journal of Geochemical Exploration 114 (12) (2012) 20-35. [DOI:10.1016/j.gexplo.2011.12.001]
22. [22] Piranjo F., "Hydrothermal processes and mineral systems", Springer, New York (2009) 1273 p.
23. [23] Large R.R. Huston D. McGoldrick P., Tuxton P.A., "Gold distribution and genesis in Australian volcanogenic massive sulfide deposits and their significance for gold transport models", Econ Geol Monogr (1992).
24. [24] Lindgren W., "A suggestion for the terminology of certain mineral deposits", Economic Geology 17(1992) 292-294. [DOI:10.2113/gsecongeo.17.4.292]
25. [25] Hedenquist J.W., "Mineralization associated with volcanic related hydrothermal systems in the Circum pacific Basin, in Horn, M.K. Circum pacific Energy and Mineral Resourse Conference 4th Singapore, 1986, Transaction", American Association of Petroleum Geologists (1987) 513-524.
26. [26] Sillitoe R.H., Hedenquist J.W., "Linkages between volcano tectonic settings, ore-flid compositions, and epithermal precious metal deposits, in Simmons, S.F., and Graham, I., eds., Volcanic, geothermal and ore forming processes: Rulers and witnesses of processes within the Earth", Society of Economic Geologists Special Publication 10 (2003) 315-343.
27. [27] Simmons S.F., White N.C., John D.A., "Geological characteristics of epithermal precious and base metal deposits. in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds. ", Economic Geology 100th Anniversary Volume: Society of Economic Geologists (2005) 485-522. [DOI:10.5382/AV100.16]
28. [28] Hedenquist J.W., Lowenstern J. B., "The role of magmas in the formation of hydrothermal ore deposits", Nature 370 (1994) 519-527. [DOI:10.1038/370519a0]
29. [29] White N., Hedenquist J.W., "Epithermal gold deposits: Styles, characteristics and exploration", SEG Newsletter, 23(1995) 9-13.
30. [30] Robert F., Poulsen K.H., Dubé B., "Gold Deposits and Their Geological Classification", Exploration Geochemistry, paper 29 (1997) 209-220.
31. [31] Sillitoe R.H., "Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the Circum-Pacific region", Australian Journal of Earth Sciences 44 (1997) 373-388. [DOI:10.1080/08120099708728318]
32. [32] Corbett G., "Epithermal Gold for Explorationists", AIG Journal-Applied geoscientific practice and research in Australia (2002) 1-26.
33. [33] Corbett, G., "Epithermal Au-Ag-The Magmatic Connection Comparisons between East and West Pacific rim", The Ishihara Symposium: Granites and Associated Metallogenesis (2004) 51-55.
34. [34] Robb L., "Introduction to ore forming processes", Blackwell Publishing Company (2006) 373 p.
35. [35] Taylor B.E., "Epithermal gold deposits, in Good fellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods", Geological Association of Canada, Mineral Deposits Division, Special Publication 5 (2007) 113-139.
36. [36] Yang E., Mao J., Bierlein F., Pirajno F., Zhao C., Ye H., Liu F., "A review of the geological characteristics and geodynamic mechanisms of Late Paleozoic epithermal gold deposits in North Xinjiang, China" Ore Geology Reviews 35 (2009) 217-234. [DOI:10.1016/j.oregeorev.2008.09.003]
37. [37] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposits", Elsevier Lithos (2001) 55: 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
38. [38] Huston D.L., and Large R.R., "A chemical model for the concentration of gold in volcanogenic massive sulphide deposits", Ore Geology Reviews, 4(3) (1989) 171-200. [DOI:10.1016/0169-1368(89)90017-6]
39. [39] Sympson M., Mauk J., "Hydrothermal alteration and veins at the epithermal Au-Ag deposits at prospect of the Waitekauri area, Hauraki goldfield, New Zealand" Ecconomic geology 106 (2011) 945-973. [DOI:10.2113/econgeo.106.6.945]
40. [40] Zar A., Warmada I., Setijadji L., Watanabe K., " Hydrothermal Gold mineralization and some features of ore mineral at the Onzon- Kanbani area, central Myanmar" International journal of mining and Geo-Engineering 52-2 (2018) 95-103.
41. [41] Norouzi A., Mehrperto M., "Study of Genetic Type and Mineralization of Epithermal Gold Storage in Siliceous Veil No. 3 Zaglig Village - Ahar" Twenty-Fourth Earth Sciences Forum, Tehran, Iran.
42. [42] Ashrafpour I., Saeed A., Quin, E., "Ore Geology and Fluid Inclusions Studies in Arghash Gold Range, NW of Neyshabour, North East of Iran" Journal of earth science 18 (71) (2009) 129-136.
43. [43] Hedenquist J., " Exploration for Epithermal Gold Deposits" SEG Reviews 13 (2000) 245-277. [DOI:10.5382/Rev.13.07]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb