Volume 26, Issue 4 (1-2019)                   www.ijcm.ir 2019, 26(4): 799-812 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari A, Karimpour M H, Mazaheri S A, Malekzadeh Shafaroudi A, Ren M. Mineral chemistry and thermometry of chlorites in mineralization zones and metamorphic rocks from Golgohar iron ore deposit (No. 1), Sirjan, Kerman. www.ijcm.ir 2019; 26 (4) :799-812
URL: http://ijcm.ir/article-1-1189-en.html
1- Ferdowsi University of Mashhad
2- University of Nevada
Abstract:   (4502 Views)
The Golgohar iron mine is located about 55 km southwest of Sirjan in the Sanandaj-Sirjan structural zone. We distinguished five mineralization zones, on the bases of mineral assemblage with magnetite. The gangue minerals are pyrite, pyrrhotite, chalcopyrite, siderite, apatite, serpentine, talc, chlorite, amphibole, calcite, dolomite and quartz. All chlorites are tri-octahedral in nature. The chlorites in MPPC and MTCA are pennine and pennine-clinochlore, respectively. The chlorites in chlorite schists have wider compositional range from pennine, clinochlore, pycnochlorite to ripidolite. Chlorite in mica schists and hornblendite are ripidolite. The chlorites with the highest amount of Mg have formed from mineralizing fluid. With decreasing of fluid/rock ratio, the chlorites show trends of decreasing Mg and increasing Fe and AlIV. Increasing of the Mg/(Mg+Fe) ratios from host rock to mineralization zones are different to those from the iron formaion. The content of minor elements in the structure of chlorite depends on the fluid composition, other crystallized minerals from the fluid, water/rock ratio and the composition of host rocks. The chlorite formation temperatures are ranging between 245°C and 415°C. MPPC zone have the lowest temperature (avg = 301°C), so Mg-rich chlorites are formed at lower temperature rather than Fe-rich Chlorites.
Full-Text [PDF 133 kb]   (1008 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] De Caritat P., Hutcheon I., Walshe J., "Chlorite geothermometry: a review", Clays and Clay Minerals 41 (1993). [DOI:10.1346/CCMN.1993.0410210]
2. [2] Vidal O., Parra T., Trotet F., "A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 C, 1 to 25 kb range", American journal of Science 301(6) (2001) 557-592. [DOI:10.2475/ajs.301.6.557]
3. [3] Deer W.A., Howie R.A., Zussman J., "Rock Forming Minerals: Layered Silicates Excluding Micas and Clay Minerals, Volume 3B", Geological Society of London, (2009).
4. [4] Barnhisel R.I., Bertsch P.M., "Chlorites and hydroxy-interlayered vermiculite and smectite", Minerals in soil environments (mineralsinsoile) (1989) 729-788.
5. [5] Inoue A., Kurokawa K., Hatta T., "Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan", Resource Geology 60(1) (2010) 52-70. [DOI:10.1111/j.1751-3928.2010.00114.x]
6. [6] Bourdelle F., Parra T., Beyssac O., Chopin C., Vidal O., "Clay minerals as geo-thermometer: A comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, USA)", American Mineralogist 98(5-6) (2013) 914-926. [DOI:10.2138/am.2013.4238]
7. [7] Xie X., Byerly G.R., Ferrell Jr R.E., "IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry", Contributions to Mineralogy and Petrology 126(3) (1997) 275-291. [DOI:10.1007/s004100050250]
8. [8] Krivovichev S.V., Armbruster T., Organova N.I., Burns P.C., Seredkin M.V., Chukanov N.V., "Incorporation of sodium into the chlorite structure: the crystal structure of glagolevite, Na (Mg, Al) 6 [Si3AlO10](OH, O) 8", American Mineralogist 89(7) (2004) 1138-1141. [DOI:10.2138/am-2004-0727]
9. [9] Zane A., Weiss Z., "A procedure for classifying rock-forming chlorites based on microprobe data", Rendiconti Lincei 9(1) (1998) 51-56. [DOI:10.1007/BF02904455]
10. [10] Guggenheim S., Adams J., Bain D., Bergaya F., Brigatti M.F., Drits V., Formoso M.L., Galán E., Kogure T., Stanjek H., "Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006", (2006).
11. [11] Alavi M., "Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran", Geological Society of America Bulletin 103(8) (1991) 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
12. [12] Ljung S., "Geological report, Gole-e-Gohar iron ore project", Private report. Granges International Mining, Stockholm, (1976).
13. [13] Valeh N., "Gol-e-Gohar iron ore project: an outline study of the Gol-e-Gohar iron ore area", National Iranian Steel Industries, excursion of the 2nd Geological Symposium of Iran, (1977).
14. [14] Moxham R., "Geology and characteristics of the Gol-e-Gohar iron deposit", Gol-e-Gohar iron project. Report of the ADM Company, (1990), p.27.
15. [15] Pourkhak F., "Paragenesis, petrogenesis and petrochemistry of Gol Gohar ore deposit (anomaly No. 3)", Shahid Bahonar University of Kerman, Kerman, Iran (in persian) (2003).
16. [16] Khalili Mobarhan S., "The genesis of the Gole Gohar iron ore deposit", MSc thesis, Shahid Bahonar University of Kerman, Kerman,Iran (in persian) (1993).
17. [17] Yaghoubi A., "The study of geochemistry and genesis of Gol Gohar ore depoist (No. 2)", MSc thesis, Shiraz University, Shiraz, Iran (in persian) (1999).
18. [18] Babaki A., Aftabi A., "Investigation on the Model of Iron Mineralization at Gol Gohar Iron Deposit, Sirjan-Kerman", Geosciences Scientific Quarterly Journal 61 (2006) 40-59 (in persian).
19. [19] Babaki A., "Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman" MSc thesis, Shahid Bahonar University of Kerman, Kerman,Iran (in persian). (2004).
20. [20] Mücke A., Golestaneh F., "The genesis of the Gol Gohar iron ore deposit (Iran)", Institu fur Mineralogie und Kritallographieder Technischen Universitat Berlin (1982) 193-212.
21. [21] Hallaji A., "Mineralogy study of trace elements and the origin of Gol Gohar ore deposit", Tehran Tarbiat Moallem University, Tehran, Iran (in persian). (1991).
22. [22] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", Journal of Asian Earth Sciences 24(4) (2005) 405-417. [DOI:10.1016/j.jseaes.2003.11.007]
23. [23] Torabian S., "Mineralization and genesis of Gol Gohar 3 mine in the base of trace element distribution" MSc thesis, Tehran Tarbiat Moallem University, Tehran, Iran (in persian). (2007).
24. [24] Asghari G., "Genesis and formation of the Gol-Gohar iron ore deposit and its host rocks" MSc thesis, University of Tehran, Tehran, Iran (in persian) (2009).
25. [25] Bayati Rad Y., "Evaluating the origin of Gol-Gohar iron ore deposite", MSc thesis, University of Tehran, Tehran, Iran (in persian). (2009).
26. [26] Sheikoleslami M.-R., "Évolution structurale et métamorphique de la marge sud de la microplaque de l'Iran central: les complexes métamorphiques de la région de Neyriz (zone de Sanandaj-Sirjan)", PhD thesis, universite´ de Brest, Brest, France (2002).
27. [27] Ghalamghash J., Mirnejad H., "Dating report of Gol Gohar metamorphic complex", Tehran Padir Consulting Engineers Company, (2008).
28. [28] Hajghanbari J., Mirnejad H., ghalamghash J., "age determination of Gol-Gohar iron deposit, based on Pb-Pb isotope method", 1th Symposium of Iranian Society of Economic Geology, Lorestan University, Iran (2011).
29. [29] Sabzehi M., "Gol Gohar geological map 1:100000, Geological survey of Iran, Tehran" (1997).
30. [30] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American mineralogist 95(1) (2010) 185-187. [DOI:10.2138/am.2010.3371]
31. [31] Hey M.H., "A new review oi the chlorites", Min. Mag 30 (1954).
32. [32] Forster M., "Interpretation of the composition and a classification of the chlorites: USGS Prof", Paper 414-A (1962).
33. [33] Wiewióra A., Weiss Z., "Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group", Clay Minerals 25(1) (1990) 83-92. [DOI:10.1180/claymin.1990.025.1.09]
34. [34] Hillier S., Velde B., "Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites", Clay Minerals 26 (1991) 149-168. [DOI:10.1180/claymin.1991.026.2.01]
35. [35] Plissart G., Féménias O., Mãruntiu M., Diot H., Demaiffe D., "Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita–Iuti ophiolite, Southwestern Romania", The Canadian Mineralogist 47(1) (2009) 81-105. [DOI:10.3749/canmin.47.1.81]
36. [36] Curtis C., Hughes C., Whiteman J., Whittle C., "Compositional variation within some sedimentary chlorites and some comments on their origin", Mineralogical Magazine 49(352) (1985) 375-386. [DOI:10.1180/minmag.1985.049.352.08]
37. [37] Chabu M., "The geochemistry of phlogopite and chlorite from the Kipushi Zn-Pb-Cu deposit, Shaba, Zaire", The Canadian Mineralogist 33(3) (1995) 547-558.
38. [38] Cruz M.D.R., Nieto J.M., "Chemical and structural evolution of "metamorphic vermiculite" in metaclastic rocks of the Betic Cordillera, Málaga, Spain: A synthesis", The Canadian Mineralogist 44(1) (2006) 249-265. [DOI:10.2113/gscanmin.44.1.249]
39. [39] Moazzen M., "Chlorite-chloritoid-garnet equilibria and geothermometry in the Sanandaj-Sirjan metamorphic belt, southern Iran", Iranian Journal of Science and Technology (Sciences) 28(1) (2004) 65-78.
40. [40] Deer W.A., Howie R.A., Zussman J., "Rock-forming Minerals. Vol. 1 Ortho-and Ring Silicates", Longman(1965).
41. [41] Zang W., Fyfe W., "Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil", Mineralium Deposita 30(1) (1995) 30-38. [DOI:10.1007/BF00208874]
42. [42] Kranidiotis P., MacLean W., "Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec", Economic Geology 82(7) (1987) 1898-1911. [DOI:10.2113/gsecongeo.82.7.1898]
43. [43] Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P., "Application of chemical geothermometry to low-temperature trioctahedral chlorites", Clays and Clay Minerals 57(3) (2009) 371-382. [DOI:10.1346/CCMN.2009.0570309]
44. [44] McDowell S.D., Elders W.A., "Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA", Contributions to mineralogy and petrology 74(3) (1980) 293-310. [DOI:10.1007/BF00371699]
45. [45] Cathelineau M., Nieva D., "A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system", Contributions to Mineralogy and Petrology 91(3) (1985) 235-244. [DOI:10.1007/BF00413350]
46. [46] Cathelineau M., "Cation site occupancy in chlorites and illites as function of temperature", Clay minerals 23(4) (1988) 471-85. [DOI:10.1180/claymin.1988.023.4.13]
47. [47] Kavalieris I., Walshe J., Halley S., Harrold B., "Dome-related gold mineralization in the Pani volcanic complex, North Sulawesi, Indonesia; a study of geologic relations, fluid inclusions, and chlorite compositions", Economic Geology 85(6) (1990) 1208-1225. [DOI:10.2113/gsecongeo.85.6.1208]
48. [48] Jowett E., "Fitting iron and magnesium into the hydrothermal chlorite geothermometer", GAC/SEG Joint Annual Meeting, Toronto, Program with Abstracts, (1991), p.A62.
49. [49] El-Sharkawy M., "Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt", Mineralium Deposita 35(4) (2000) 346-363. [DOI:10.1007/s001260050246]
50. [50] Karimpour M.H., Khin Z., "Geochemistry and physicochemical condition of Qaleh-Zari Cu-Ag-Au ore bearing solution based on chlorite composition", Iranian Journal of Crystallography and Mineralogy 8(1) (2000) 3-22.
51. [51] Large R., "Zonation of hydrothermal minerals at the Juno mine, Tennant Creek goldfield, central Australia", Economic Geology 70(8) (1975) 1387-1413. [DOI:10.2113/gsecongeo.70.8.1387]
52. [52] Costa U., Barnett R., Kerrich R., "The Mattagami Lake Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, 18 O/16 O, and mineral chemistry", Economic Geology 78(6) (1983) 1144-1203. [DOI:10.2113/gsecongeo.78.6.1144]
53. [53] Laird J., "Chlorites; metamorphic petrology", Reviews in Mineralogy and Geochemistry 19(1) (1988) 405-453.
54. [54] Bryndzia L.T., Scott S.D., "The composition of chlorite as a function of sulfur and oxygen fugacity; an experimental study", American Journal of Science 287(1) (1987) 50-76. [DOI:10.2475/ajs.287.1.50]
55. [55] Bryndzia L.T., Scott S.D., "Application of chlorite-sulfide-oxide equilibria to metamorphosed massive sulfide ores, Snow Lake area, Manitoba", Economic Geology 82(4) (1987) 963-970. [DOI:10.2113/gsecongeo.82.4.963]
56. [56] Bevins R., Robinson D., Rowbotham G., "Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer", Journal of Metamorphic Geology 9(6) (1991) 711-721. [DOI:10.1111/j.1525-1314.1991.tb00560.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb