دوره 26، شماره 4 - ( 10-1397 )                   جلد 26 شماره 4 صفحات 799-812 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari A, Karimpour M H, Mazaheri S A, Malekzadeh Shafaroudi A, Ren M. Mineral chemistry and thermometry of chlorites in mineralization zones and metamorphic rocks from Golgohar iron ore deposit (No. 1), Sirjan, Kerman. www.ijcm.ir. 2019; 26 (4) :799-812
URL: http://ijcm.ir/article-1-1189-fa.html
جعفری افسانه، کریم‌پور محمدحسن، مظاهری سید احمد، ملک‌زاده شفارودی آزاده، رن مینغوآ. ‌شیمی و دماسنجی کلریت در پهنه‌های کانی‌سازی و سنگ‌های دگرگونی معدن سنگ آهن گل‌گهر (شماره 1)، سیرجان، کرمان. مجله بلورشناسی و کانی شناسی ایران. 1397; 26 (4) :799-812

URL: http://ijcm.ir/article-1-1189-fa.html


دانشگاه فردوسی مشهد
چکیده:   (241 مشاهده)
مجموعه معدنی گل‌گهر در 55 کیلومتری جنوب‌غرب سیرجان در پهنه دگرگونی سنندج- سیرجان واقع است. بر اساس مجموعه کانی‌های همراه با مگنتیت، 5 پهنه کانی‌سازی تشخیص داده شد. کانی‌های باطله شامل پیریت، پیروتیت، کالکوپیریت، سیدریت، آپاتیت، سرپنتین، طلق، کلریت، آمفیبول، کلسیت، دولومیت و کوارتز است. همه کلریت‌ها از نوع سه­هشت­وجهی (کلینوکلر- شاموزیت) هستند. کلریت‌های پهنه مگنتیت+پیریت+پیروتیت+کالکوپیریت (MPPC) و پهنه مگنتیت+تالک+کلریت+آمفیبول (MTCA) به‌ترتیب پننین و پننین- کلینوکلر هستند. کلریت‌های موجود درکلریت‌ شیست‌ها گستره ترکیبی گسترده­تری از پننین، کلینوکلر، پیکنوکلریت تا رپیدولیت را نشان می‌دهند. کلریت‌ در میکا شیست‌ها و آمفیبولیت از نوع رپیدولیت هستند. کلریت‌هایی که مستقیم از سیال کانه‌ساز تشکیل می‌شوند بیشترین مقدار Mg را دارند. با کاهش نسبت سیال به سنگ، Mg کاهش و Fe و AlIV افزایش می‌یابند. افزایش نسبت Mg/(Mg+Fe) از سنگ‌های میزبان به سمت پهنه کانی‌سازی متفاوت با کلریت سازند آهن است. مقدار عناصر فرعی در ساختار کلریت به ترکیب سیال، سایر کانی‌های متبلور شده از سیال، نسبت واکنش سنگ/آب و ترکیب سنگ میزبان وابسته است. گستره‌ دمایی تشکیل کلریت از °C245 تا °C415 متغیر است (گستره دمایی شیست سبز). پهنه کانی‌‌سازی MPPC با دمای متوسط °C301 کمترین دمای تشکیل را داراست، بنابراین کلریت های غنی از منیزیم در دمای کمتری نسبت به کلریت‌های غنی از آهن تشکیل شده‌اند.     
متن کامل [PDF 4189 kb]   (69 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۷/۱۰/۵ | پذیرش: ۱۳۹۷/۱۰/۵ | انتشار: ۱۳۹۷/۱۰/۵

فهرست منابع
1. [1] De Caritat P., Hutcheon I., Walshe J., "Chlorite geothermometry: a review", Clays and Clay Minerals 41 (1993). [DOI:10.1346/CCMN.1993.0410210]
2. [2] Vidal O., Parra T., Trotet F., "A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 C, 1 to 25 kb range", American journal of Science 301(6) (2001) 557-592. [DOI:10.2475/ajs.301.6.557]
3. [3] Deer W.A., Howie R.A., Zussman J., "Rock Forming Minerals: Layered Silicates Excluding Micas and Clay Minerals, Volume 3B", Geological Society of London, (2009).
4. [4] Barnhisel R.I., Bertsch P.M., "Chlorites and hydroxy-interlayered vermiculite and smectite", Minerals in soil environments (mineralsinsoile) (1989) 729-788.
5. [5] Inoue A., Kurokawa K., Hatta T., "Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan", Resource Geology 60(1) (2010) 52-70. [DOI:10.1111/j.1751-3928.2010.00114.x]
6. [6] Bourdelle F., Parra T., Beyssac O., Chopin C., Vidal O., "Clay minerals as geo-thermometer: A comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, USA)", American Mineralogist 98(5-6) (2013) 914-926. [DOI:10.2138/am.2013.4238]
7. [7] Xie X., Byerly G.R., Ferrell Jr R.E., "IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry", Contributions to Mineralogy and Petrology 126(3) (1997) 275-291. [DOI:10.1007/s004100050250]
8. [8] Krivovichev S.V., Armbruster T., Organova N.I., Burns P.C., Seredkin M.V., Chukanov N.V., "Incorporation of sodium into the chlorite structure: the crystal structure of glagolevite, Na (Mg, Al) 6 [Si3AlO10](OH, O) 8", American Mineralogist 89(7) (2004) 1138-1141. [DOI:10.2138/am-2004-0727]
9. [9] Zane A., Weiss Z., "A procedure for classifying rock-forming chlorites based on microprobe data", Rendiconti Lincei 9(1) (1998) 51-56. [DOI:10.1007/BF02904455]
10. [10] Guggenheim S., Adams J., Bain D., Bergaya F., Brigatti M.F., Drits V., Formoso M.L., Galán E., Kogure T., Stanjek H., "Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006", (2006).
11. [11] Alavi M., "Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran", Geological Society of America Bulletin 103(8) (1991) 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
12. [12] Ljung S., "Geological report, Gole-e-Gohar iron ore project", Private report. Granges International Mining, Stockholm, (1976).
13. [13] Valeh N., "Gol-e-Gohar iron ore project: an outline study of the Gol-e-Gohar iron ore area", National Iranian Steel Industries, excursion of the 2nd Geological Symposium of Iran, (1977).
14. [14] Moxham R., "Geology and characteristics of the Gol-e-Gohar iron deposit", Gol-e-Gohar iron project. Report of the ADM Company, (1990), p.27.
15. [15] Pourkhak F., "Paragenesis, petrogenesis and petrochemistry of Gol Gohar ore deposit (anomaly No. 3)", Shahid Bahonar University of Kerman, Kerman, Iran (in persian) (2003).
16. [16] Khalili Mobarhan S., "The genesis of the Gole Gohar iron ore deposit", MSc thesis, Shahid Bahonar University of Kerman, Kerman,Iran (in persian) (1993).
17. [17] Yaghoubi A., "The study of geochemistry and genesis of Gol Gohar ore depoist (No. 2)", MSc thesis, Shiraz University, Shiraz, Iran (in persian) (1999).
18. [18] Babaki A., Aftabi A., "Investigation on the Model of Iron Mineralization at Gol Gohar Iron Deposit, Sirjan-Kerman", Geosciences Scientific Quarterly Journal 61 (2006) 40-59 (in persian).
19. [19] Babaki A., "Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman" MSc thesis, Shahid Bahonar University of Kerman, Kerman,Iran (in persian). (2004).
20. [20] Mücke A., Golestaneh F., "The genesis of the Gol Gohar iron ore deposit (Iran)", Institu fur Mineralogie und Kritallographieder Technischen Universitat Berlin (1982) 193-212.
21. [21] Hallaji A., "Mineralogy study of trace elements and the origin of Gol Gohar ore deposit", Tehran Tarbiat Moallem University, Tehran, Iran (in persian). (1991).
22. [22] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", Journal of Asian Earth Sciences 24(4) (2005) 405-417. [DOI:10.1016/j.jseaes.2003.11.007]
23. [23] Torabian S., "Mineralization and genesis of Gol Gohar 3 mine in the base of trace element distribution" MSc thesis, Tehran Tarbiat Moallem University, Tehran, Iran (in persian). (2007).
24. [24] Asghari G., "Genesis and formation of the Gol-Gohar iron ore deposit and its host rocks" MSc thesis, University of Tehran, Tehran, Iran (in persian) (2009).
25. [25] Bayati Rad Y., "Evaluating the origin of Gol-Gohar iron ore deposite", MSc thesis, University of Tehran, Tehran, Iran (in persian). (2009).
26. [26] Sheikoleslami M.-R., "Évolution structurale et métamorphique de la marge sud de la microplaque de l'Iran central: les complexes métamorphiques de la région de Neyriz (zone de Sanandaj-Sirjan)", PhD thesis, universite´ de Brest, Brest, France (2002).
27. [27] Ghalamghash J., Mirnejad H., "Dating report of Gol Gohar metamorphic complex", Tehran Padir Consulting Engineers Company, (2008).
28. [28] Hajghanbari J., Mirnejad H., ghalamghash J., "age determination of Gol-Gohar iron deposit, based on Pb-Pb isotope method", 1th Symposium of Iranian Society of Economic Geology, Lorestan University, Iran (2011).
29. [29] Sabzehi M., "Gol Gohar geological map 1:100000, Geological survey of Iran, Tehran" (1997).
30. [30] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American mineralogist 95(1) (2010) 185-187. [DOI:10.2138/am.2010.3371]
31. [31] Hey M.H., "A new review oi the chlorites", Min. Mag 30 (1954).
32. [32] Forster M., "Interpretation of the composition and a classification of the chlorites: USGS Prof", Paper 414-A (1962).
33. [33] Wiewióra A., Weiss Z., "Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group", Clay Minerals 25(1) (1990) 83-92. [DOI:10.1180/claymin.1990.025.1.09]
34. [34] Hillier S., Velde B., "Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites", Clay Minerals 26 (1991) 149-168. [DOI:10.1180/claymin.1991.026.2.01]
35. [35] Plissart G., Féménias O., Mãruntiu M., Diot H., Demaiffe D., "Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita–Iuti ophiolite, Southwestern Romania", The Canadian Mineralogist 47(1) (2009) 81-105. [DOI:10.3749/canmin.47.1.81]
36. [36] Curtis C., Hughes C., Whiteman J., Whittle C., "Compositional variation within some sedimentary chlorites and some comments on their origin", Mineralogical Magazine 49(352) (1985) 375-386. [DOI:10.1180/minmag.1985.049.352.08]
37. [37] Chabu M., "The geochemistry of phlogopite and chlorite from the Kipushi Zn-Pb-Cu deposit, Shaba, Zaire", The Canadian Mineralogist 33(3) (1995) 547-558.
38. [38] Cruz M.D.R., Nieto J.M., "Chemical and structural evolution of "metamorphic vermiculite" in metaclastic rocks of the Betic Cordillera, Málaga, Spain: A synthesis", The Canadian Mineralogist 44(1) (2006) 249-265. [DOI:10.2113/gscanmin.44.1.249]
39. [39] Moazzen M., "Chlorite-chloritoid-garnet equilibria and geothermometry in the Sanandaj-Sirjan metamorphic belt, southern Iran", Iranian Journal of Science and Technology (Sciences) 28(1) (2004) 65-78.
40. [40] Deer W.A., Howie R.A., Zussman J., "Rock-forming Minerals. Vol. 1 Ortho-and Ring Silicates", Longman(1965).
41. [41] Zang W., Fyfe W., "Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil", Mineralium Deposita 30(1) (1995) 30-38. [DOI:10.1007/BF00208874]
42. [42] Kranidiotis P., MacLean W., "Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec", Economic Geology 82(7) (1987) 1898-1911. [DOI:10.2113/gsecongeo.82.7.1898]
43. [43] Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P., "Application of chemical geothermometry to low-temperature trioctahedral chlorites", Clays and Clay Minerals 57(3) (2009) 371-382. [DOI:10.1346/CCMN.2009.0570309]
44. [44] McDowell S.D., Elders W.A., "Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA", Contributions to mineralogy and petrology 74(3) (1980) 293-310. [DOI:10.1007/BF00371699]
45. [45] Cathelineau M., Nieva D., "A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system", Contributions to Mineralogy and Petrology 91(3) (1985) 235-244. [DOI:10.1007/BF00413350]
46. [46] Cathelineau M., "Cation site occupancy in chlorites and illites as function of temperature", Clay minerals 23(4) (1988) 471-85. [DOI:10.1180/claymin.1988.023.4.13]
47. [47] Kavalieris I., Walshe J., Halley S., Harrold B., "Dome-related gold mineralization in the Pani volcanic complex, North Sulawesi, Indonesia; a study of geologic relations, fluid inclusions, and chlorite compositions", Economic Geology 85(6) (1990) 1208-1225. [DOI:10.2113/gsecongeo.85.6.1208]
48. [48] Jowett E., "Fitting iron and magnesium into the hydrothermal chlorite geothermometer", GAC/SEG Joint Annual Meeting, Toronto, Program with Abstracts, (1991), p.A62.
49. [49] El-Sharkawy M., "Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt", Mineralium Deposita 35(4) (2000) 346-363. [DOI:10.1007/s001260050246]
50. [50] Karimpour M.H., Khin Z., "Geochemistry and physicochemical condition of Qaleh-Zari Cu-Ag-Au ore bearing solution based on chlorite composition", Iranian Journal of Crystallography and Mineralogy 8(1) (2000) 3-22.
51. [51] Large R., "Zonation of hydrothermal minerals at the Juno mine, Tennant Creek goldfield, central Australia", Economic Geology 70(8) (1975) 1387-1413. [DOI:10.2113/gsecongeo.70.8.1387]
52. [52] Costa U., Barnett R., Kerrich R., "The Mattagami Lake Mine Archean Zn-Cu sulfide deposit, Quebec; hydrothermal coprecipitation of talc and sulfides in a sea-floor brine pool; evidence from geochemistry, 18 O/16 O, and mineral chemistry", Economic Geology 78(6) (1983) 1144-1203. [DOI:10.2113/gsecongeo.78.6.1144]
53. [53] Laird J., "Chlorites; metamorphic petrology", Reviews in Mineralogy and Geochemistry 19(1) (1988) 405-453.
54. [54] Bryndzia L.T., Scott S.D., "The composition of chlorite as a function of sulfur and oxygen fugacity; an experimental study", American Journal of Science 287(1) (1987) 50-76. [DOI:10.2475/ajs.287.1.50]
55. [55] Bryndzia L.T., Scott S.D., "Application of chlorite-sulfide-oxide equilibria to metamorphosed massive sulfide ores, Snow Lake area, Manitoba", Economic Geology 82(4) (1987) 963-970. [DOI:10.2113/gsecongeo.82.4.963]
56. [56] Bevins R., Robinson D., Rowbotham G., "Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer", Journal of Metamorphic Geology 9(6) (1991) 711-721. [DOI:10.1111/j.1525-1314.1991.tb00560.x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb