Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 749-760 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajialioghli R. Mineral chemistry, P-T and tectonometamorphic evolutions of garnet amphibolites from the Takht-e-Soleyman, NW Takab. www.ijcm.ir 2018; 25 (4) :749-760
URL: http://ijcm.ir/article-1-993-en.html
University of Tabriz
Abstract:   (4383 Views)
The Takht-e-Soleyman complex is formed from various rock types including metapelites, metabasites and marbles which are metamorphosed under green schist through amphibolite to granulite facies. The amphibolites have been melted partially under high temperatures and mafic migmatites are formed in this regard. The pick metamorphic minerals of garnet amphibolites have been completely replaced by the low temperature plagioclase-hornblende symplectite. So, the pick metamorphic P-T conditions of these rocks (M1) have not been recognized due to the lack of proper mineral assemblage and chemistry of phases. The retrograde P-T conditions (M2) have been determined on the basis of textural evidence, equilibrium mineral assemblage and mineral chemistry as two stages: (1) the retrograde metamorphism as strong decreasing of pressure (M2-a) and (2) cooling and decompression stage during exhumation of the rocks (M2-b). The temperature and pressure conditions during M2-a and M2-b have been obtained as 650°C-700°C at 7-8 kbar and 510°C-570°C at 5.5-6 kbar, respectively. Considering textural evidence, mineral assemblage, thermobarometry estimations and clockwise retrograde P-T paths of the investigated rocks it can be considered that the first section of P-T path with deep dP/dT sleep indicates strong decreasing of pressure most probably related to thrust faulting resulted from crustal thickening during continental collision, whereas the second part of P-T path has been formed by cooling of the rocks related to crustal thinning and exhumation processes. So the retrograde metamorphism and exhumation of the Takht-e-Soleyman garnet amphibolites is consistent with the crustal thickening and its subsequent thinning due to compressions and extensions related to the Laramid orogenic phase during closuring of Neotethys.
Full-Text [PDF 131 kb]   (1346 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Berberian M., King G.C.P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 210–265. [DOI:10.1139/e81-019]
2. [2] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: New data and interpretations", Tectonophysics 229 (1994) 211–238. [DOI:10.1016/0040-1951(94)90030-2]
3. [3] Stocklin J., "Structural history and tectonics of Iran: a review: American Association of Petroleum", Geologists Bulletin 52 (1968) 1229–1258.
4. [4] Alavi M., Hajian J., Amidi M., Bolourchi H., "Geology of Takab-Shahin-Dez Quadrangle", The Ministry of Mines and Metals of Iran, Tehran (1982) 100 p.
5. [5] بابا خانی ع.، قلمقاش ج.، "نقشه زمین شناسی 100000/1 تخت سلیمان"، (1371) سازمان زمین شناسی ایران.
6. [6] Moazzen M., Hajialioghli R., Möller A., Droop G.T.R., Oberhänsli R., Altenberger U., Jahangiri A., "Oligocene partial melting in the Takab metamorphic complex, NW Iran: Evidence from in situ U-Pb geochronology", Journal of Sciences, Islamic Republic of Iran 24 (2013) 217-228.
7. [7] Kretz R., "Symbols for rock-forming minerals", American Mineralogist 68 (1983) 277-279.
8. [8] Droop G.T.R., "A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria", Mineralogical Magazine 51 (1987) 431–435. [DOI:10.1180/minmag.1987.051.361.10]
9. [9] Abdel Naby H., Frisch W., Hegner E., "Evolution of Pan-African Wadi Haimur metamorphic sole, Eastern Desert, Egypt", Journal of Metamorphic Petrology 18 (2000) 639-651. [DOI:10.1046/j.1525-1314.2000.00286.x]
10. [10] Leake B.E., Woolley A.R., Birch W.D., Burke E.A.J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H.J., Krivovichev V.G., Schumacher J.C., Stephenson N.C.N., Whittaker E.J.W., "Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature", Canadian Mineraogist 41 (2004) 1355-1370. [DOI:10.2113/gscanmin.41.6.1355]
11. [11] Raase P., "Al and Ti Contents of Hornblende. Indicators of Pressure and Temperature of Regional Metamorphism", Contributions to Mineralogy and Petrology 45 (1974) 231- 236. [DOI:10.1007/BF00383440]
12. [12] Hynes A., "A comparison of amphiboles from medium- and lowpressure metabasites", Contributions to Mineralogy and Petrology 8 (1982) 119-125. [DOI:10.1007/BF00372049]
13. [13] Woodsworth G.J., "Homogenization of zoned garnets from politic schists", Canadian Mineralogist 15 (1977) 230-242.
14. [14] Thiéblemont D., Pascual E., Stein G., "Magmatism in the Iberian Pyrite Belt: petrological constraints on a metallogenic model", Mineralium Deposita 33 (1998) 98–110.
15. [15] Zhang K.J., "North and South China collision along the eastern and southern north China margins reply", Tectonophysics 312 (1999) 363-366. [DOI:10.1016/S0040-1951(99)00175-4]
16. [16] Graham C.M., Powell R., "A garnet–hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California", Journal of Metamorphic Geology 2 (1984) 13–31. [DOI:10.1111/j.1525-1314.1984.tb00282.x]
17. [17] Ravna E.K., "Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet–hornblende Fe–Mg geothermometer", Lithos 53 (2000) 265–277. [DOI:10.1016/S0024-4937(00)00029-3]
18. [18] Plyusnina L.P., "Geothermometry and Geobarometry of Plagioclase-Hornblende Bearing Assemblages", Contributions to Mineralogy and Petrology 80 (1982) 140-146. [DOI:10.1007/BF00374891]
19. [19] Kohn, M.J. and Spear, F.S., 1989. Empirical calibration of geobarometers for the assemblage garnet + hornblende + plagioclase + quartz. American Mineralogist, 74: 77-84.
20. [20] Kohn M.J., Spear F.S., "Two new geobarometers for garnet amphibolites, withapplications to southeast Vermont", American Mineralogist 75 (1990) 89-96.
21. [21] Johnson M.C., Rutherford M.J., "Experimental calibration of the aluminum-in hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks" Geology 17 (1989) 837–841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
22. [22] Spear F.S., "The gedrite-anthophyllite solvus and the composition limits of orthoamphibole from the Post Pond Volcanics, Vermont", American Mineralogist 65 (1980) 1103-1118.
23. [23] Perchuk L.L., Aranivich L.Y., Podlesskiy K.K., Lavrant I.V., Gerasimov V.Y., Kitsul V.L., Karsakov L.P., Perdnikov N.V., "Precambrian granulites of the Aldon Shield, Eastern Siberia", Journal of Metamorphic Geology 3 (1985) 263-310. [DOI:10.1111/j.1525-1314.1985.tb00321.x]
24. [24] Hammarstrom J.M., Zen E.A., "Aluminium in hornblende: an empirical igneous Geobaromete", American Mineralogist 71 (1986) 1297–1313.
25. [25] McCarthy T. C., Pati-o Douce A. E., "Empirical calibration of the silica-Ca-tschermak's anorthite (SCAn) geobarometer", Journal of Metamorphic Geology 16 (1998) 675-686. [DOI:10.1111/j.1525-1314.1998.00164.x]
26. [26] Guo J.H., O'Brien P.J., Zhai M.G., "High pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P–T paths and geotectonic significance", Jurnal of Metamorphic Geology 20 (2002) 741–756. [DOI:10.1046/j.1525-1314.2002.00401.x]
27. [27] Bohlen S.R., "On the formation of granulites", Journal of Metamorphic Geology 9 (1991) 223–229. [DOI:10.1111/j.1525-1314.1991.tb00518.x]
28. [28] Brown M., "P–T–t evolution of orogenic belts and the causes of regional metamorphism", Journal of the Geological Society of London 150 (1993) 227–241. [DOI:10.1144/gsjgs.150.2.0227]
29. [29] Carswell D.A., O'Brien P.J., "Thermobarometry and geotectonic sig-nificance of High Pressure granulites: examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria", Journal of Petrology 34 (1993) 427-459. [DOI:10.1093/petrology/34.3.427]
30. [30] Ellis D.J., "Origin and evolution of granulites in normal and thickened crusts", Geology 15 (1987) 167-170. https://doi.org/10.1130/0091-7613(1987)15<167:OAEOGI>2.0.CO;2 [DOI:10.1130/0091-7613(1987)152.0.CO;2]
31. [31] Harley S.L., "The origin of granulites: a metamorphic perspective", Geological Magazine 12 (1989) 215–247. [DOI:10.1017/S0016756800022330]
32. [32] Green D.H., Ringwood A.E., "An experimental investigation of the gabbro to eclogite transformation and its petrological applications", Geochimica et Cosmochimica Acta 31 (1967) 767-833. [DOI:10.1016/S0016-7037(67)80031-0]
33. [33] Tenthorey E.A., Ryan J.C., Snow E.A., "Petrogenesis of sapphirine-bearing metatroctolites from the Buck Creek ultramafic body, southern Appalachian", Journal of Metamorphic Geology 14 (1996) 103–114.
34. [34] Münttener O., Hermann J., Trommsdorff V., "CoolingHistory and exhumation of lower-crustal granulite and upper mantle (Malenco, Eastern Central Alps)" Journal of Petrology 41 (2000) 175-200. [DOI:10.1093/petrology/41.2.175]
35. [35] Bohlen S.R., "Pressure-temperature-time paths and a tectonic model for the evolution of granulite", Journal of Geology 95 (1987) 617–632. [DOI:10.1086/629159]
36. [36] Wells P.R.A., "Thermal models for the magmatic accretion and subsequent metamorphism of continental crust" Earth and Planetary Science Letters 46 (1980) 253–265. [DOI:10.1016/0012-821X(80)90011-4]
37. [37] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation" International Journal of Earth Sciences 94 (2005) 401–419. [DOI:10.1007/s00531-005-0481-4]
38. [38] Stockli D.F., Hassanzadeh J., Stockli L.D., Axen G., Walker J.D., Dewane T.J., "Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran" Abstract, Programs Geological Society of America 36 (2004) 319.
39. [39] Gilg H.A., Boni M., Balassone G., Allen C.R., Banks D., Moore F., "Marble-hosted sulfide ores in the Angouran Zn-(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex" Mineralium Deposita 41 (2006) 1–16. [DOI:10.1007/s00126-005-0035-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb