Volume 30, Issue 3 (9-2022)                   www.ijcm.ir 2022, 30(3): 14-14 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amrollahi Bioki, Moshaii, Borhani Zarandi. Investigation on the optical and structural properties of TiO2 layer doped with metal-organic frameworks as an electron transfer layer in mesoprous perovskite solar cells. www.ijcm.ir 2022; 30 (3) :14-14
URL: http://ijcm.ir/article-1-1793-en.html
Abstract:   (827 Views)
In this research, nanocrystals of metal-organic frameworks (MOF), based on metal ions of aluminum, bismuth, cobalt, chromium, copper, tin, titanium and zinc with homogenous morphology were synthesized using a solvo-thermal method as an organic framework to form the porous MOF-doped TiO2 for electron transport layer in perovskite solar cells. By thermally decomposing the MOF-doped TiO2 layer in air, the organic template was removed, and porous MOF-doped TiO2 was obtained.  The results of optical properties of crystal structure of porous MOF-doped TiO2 layer showed that doping with MOF remarkably improved the absorption ability of TiO2-MOF layer toward the Uv-Vis region with band gap energy less than of 2.7 eV.  The photoluminescence spectroscopy was conducted to illustrate the improvement of electron transfer in the doped material further. The power conversion efficiency of solar cells using MOF-doped TiO2 was found to improve in comparing that of solar cells using pristine mp-TiO2.
Full-Text [PDF 3003 kb]   (283 Downloads)    
Type of Study: Research | Subject: Special

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb