Volume 29, Issue 4 (12-2021)                   www.ijcm.ir 2021, 29(4): 16-16 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eghdami, Gholizadeh. The effect of cobalt substitution on the structural and elastic properties of MnFe2O4 nanoparticles. www.ijcm.ir 2021; 29 (4) :16-16
URL: http://ijcm.ir/article-1-1690-en.html
Abstract:   (620 Views)
In this paper, a comprehensive study of structural and elastic properties of MnFe2-xCoxO4 (x = 0.00, 0.40, 0.80, 1.20, 1.60, 2.00) nanoparticles, prepared by citrate-nitrate methodhas, been carried out. Samples were structurally analyzed using X-ray diffraction and Rietveld refinement. The results showed that the structure of the samples could be indexed in cubic symmetry with the space group Fdm, which is confirmed by Fourier transform infrared spectroscopy. The values ​​of the elastic constants of the samples were calculated using the values ​​of the structural parameters as well as the frequencies obtained from the infrared spectrum of the samples. The values ​​of shear and transverse wave velocities obtained from force constants were used to determine the values ​​of Young's modulus, rigidity modulus, bulk modulus, and Debye temperature. The change in the elastic values ​​of the studied samples can be explained in terms of the presence of Co ions and the bond lengths obtained from the Rietveld method.
Full-Text [PDF 838 kb]   (163 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Niaifar M., Shalilian H., Hassanpour A., Omigian J., "Synthesis and investigation on structural and magnetic properties of Cu doped Ni Zn ferrite nanopowders prepared via sol-gel method", Iranian Journal of Crystallography and Mineralogy 2013; 21 (3) :511-518.
2. [2] Niaifar M., Morahemi F., Hassanpour A., Omigian J., "Synthesize and Investigation of Magnetic and Structural Properties of MnFe2O4 Nanoparticles Substituted by Co2+", Iranian Journal of Crystallography and Mineralogy 2014; 22 (1) :149-154.
3. [3] Blooki F., Khandan Fadafan H., Lotfi Orimi R., "Effect of Mn2+ substitution on the structure and magnetic properties of nanosized Ni(0.5-x)MnxZn0.5Fe2O4 (x = 0, 0.25, 0.35, 0.5) ferrites prepared by co-precipitation method", Iranian Journal of Crystallography and Mineralogy 2015; 23 (2) :285-294.
4. [4] Khedri H., Gholizadeh A., Malekzadeh A., "Effect of annealing temperature on structural, optical and catalytic properties of Cu-Zn ferrite nanoparticles", Iranian Journal of Crystallography and Mineralogy 2016; 24 (2) :297-308.
5. [5] Ahmad Gholizadeh, "A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods", Journal of the American Ceramic Society 100(8) (2017) 3577-3588. [DOI:10.1111/jace.14896]
6. [6] N. Shamgani, A. Gholizadeh, "Structural, magnetic and elastic properties of Mn0.3-xMgxCu0.2Zn0.5Fe3O4 nanoparticles", Ceramics International 45 (2019) 239-246. [DOI:10.1016/j.ceramint.2018.09.158]
7. [7] Ahmad Gholizadeh, A comparative study of the physical properties of Cu-Zn ferrites annealed under different atmospheres and temperatures: Magnetic enhancement of Cu0.5Zn0.5Fe2O4 nanoparticles by a reducing atmosphere, Journal of Magnetism and Magnetic Materials 452 (2018) 389-397. [DOI:10.1016/j.jmmm.2017.12.109]
8. [8] A. Gholizadeh, E. Jafari, "Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere." Journal of Magnetism and Magnetic Materials 422 (2017) 328-336. [DOI:10.1016/j.jmmm.2016.09.029]
9. [9] S. M. Patange, Sagar E. Shirsath, K.S. Lohar, S. G. Algude, S. R. Kamble, N. Kulkarni, D. R. Mane, K. M. Jadhav "Infrared spectral and elastic moduli study of NiFe2-xCrxO4 nanocrystalline ferrites", Journal of Magnetism and Magnetic Materials, 2013, vol. 325, pp. 107-111. [DOI:10.1016/j.jmmm.2012.08.022]
10. [10] K. B. Modi, "Elastic moduli determination through IR spectroscopy for zinc substituted copper ferri chromates", Journal of Materials Science, 2004, vol. 39, pp. 2887-2890. [DOI:10.1023/B:JMSC.0000021472.00590.9b]
11. [11] Oleksandr Yelenich, Sergii Solopan, Taras Kolodiazhnyi, Yuliya Tykhonenko, Alexandr Tovstolytkin and Anatolii Belous, "Magnetic Properties and AC Losses in AFe2O4 (A = Mn, Co, Ni, Zn) Nanoparticles Synthesized from Nonaqueous Solution", Journal of Chemistry, Vol. 2015, Article ID 532198, 9 pages, http://dx.doi.org/10.1155/2015/532198. [DOI:10.1155/2015/532198]
12. [12] B Aslibeiki, P Kameli, H Salamati, M Eshraghi and T Tahmasebi "Superspin glass state in MnFe2O4 nanoparticles." Journal of Magnetism and Magnetic Materials 322.19 (2010): 2929-2934. [DOI:10.1016/j.jmmm.2010.05.007]
13. [13] Amit S. Bandekar, Paresh S. Gaikar, Ankita P. Angre, Aishwarya M. Chaughule4 & Nana S. Pradhan, Effect of Annealing on Microstructure and Magnetic Properties of Mn Ferrite Powder, J. Biol. Chem. Chron. 5 [3] (2019) 74-78.
14. [14] Md. Amir, U. Kurtan, A. Baykal, H. Sözeri, MnFe2O4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants, Journal of Materials Science & Technology 32 (2016) 134-141. [DOI:10.1016/j.jmst.2015.12.011]
15. [15] Niéli Daffé Marcin Sikora Mauro Rovezzi Nadejda Bouldi Véronica Gavrilov Sophie Neveu, et al., Nanoscale Distribution of Magnetic Anisotropies in Bimagnetic Soft Core-Hard Shell MnFe2O4@CoFe2O4 Nanoparticles, Advance Materials Interfaces 4 [22] (2017) 1700599. [DOI:10.1002/admi.201700599]
16. [16] B. Saravanakumar, G. Ravi, V. Ganesh, Ramesh K. Guduru, R. Yuvakkumar, "MnCo2O4 nanosphere synthesis for electrochemical applications." Materials Science for Energy Technologies 2.1 (2019) 130-138. [DOI:10.1016/j.mset.2018.11.008]
17. [17] P. L. Meena, Sunita Pal, K. Sreenivas and Ravi Kumar, Structural and Magnetic Properties of MnCo2O4 Spinel Multiferroic, Advanced Science Letters 21 [9] (2015) 2760-2763. [DOI:10.1166/asl.2015.6336]
18. [18] Esmaili L., Gholizadeh A., "Effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of bismuth ferrite", Iranian Journal of Crystallography and Mineralogy 2019; 26 (4):1013-1026. [DOI:10.29252/ijcm.26.4.1013]
19. [19] R.D. T. Shannon, C. Tfc Prewitt. Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 25.5 (1969) 925-946. [DOI:10.1107/S0567740869003220]
20. [20] Khairul Islam, Manjurul Haque, Arup Kumar, Amitra Hoq, Fahmeed Hyder and Sheikh Manjura Hoque. Manganese Ferrite Nanoparticles (MnFe2O4):Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 2297; doi:10.3390/nano10112297. [DOI:10.3390/nano10112297]
21. [21] B. Rajesh Babu, K. V. Ramesh, M. S. R. Prasad, Y. Purushotham, Structural, Magnetic, and Dielectric Properties of Ni0.5Zn0.5AlxFe2−xO4 Nanoferrites, J. Supercond. Nov. Magn. (2016) 29:939-950. [DOI:10.1007/s10948-015-3350-9]
22. [22] K. Rajasekhar Babu, M. Purnachandra Rao, P. S. V. Subba Rao, K. Rama Rao, B. Kishore Babu, B. Rajesh Babu, Structural and Magnetic Properties of Cu2+ Substituted Co-Zn Ferrite Nanoparticles, Synthesized by Sol-Gel Combustion Method, Journal of Inorganic and Organometallic Polymers and Materials 27(2017), DOI: 10.1007/s10904-017-0499-7. [DOI:10.1007/s10904-017-0499-7]
23. [23] M. Atif, S.K. Hasanain, M. Nadeem, "Magnetization of sol-gel prepared zinc ferrite nanoparticles:Effects of inversion and particle size", Solid State Communications 138 (2006) 416-421. [DOI:10.1016/j.ssc.2006.03.023]
24. [24] V. Šepelák , L. Wilde, U. Steinike, K.D. Becker, "Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite", Materials Science and Engineering A 375-377 (2004) 865-868 [DOI:10.1016/j.msea.2003.10.179]
25. [25] M. Mozaffari Eghbali, M. Arani, J. Amighian, "The effect of cation distribution on magnetization of ZnFe2O4 nanoparticles", Journal of Magnetism and Magnetic Materials, 322 (2010) 3240-3244. [DOI:10.1016/j.jmmm.2010.05.053]
26. [26] A. Gholizadeh, M. Beyranvand, Structural, magnetic, elastic, and dielectric properties of Mg0.3−xBaxCu0.2Zn0.5Fe2O4 nanoparticles, Physica B: Physics of Condensed Matter, 584 (2020) 412079. [DOI:10.1016/j.physb.2020.412079]
27. [27] M. Beyranvand, A. Gholizadeh, Structural, magnetic, elastic, and dielectric properties of Mn0.3−xCdxCu0.2Zn0.5Fe2O4 nanoparticles, Journal of Materials Science: Materials in Electronics, 31(7),2020,5124-5140. [DOI:10.1007/s10854-020-03073-8]
28. [28] R. D. Waldron. Infrared Spectra of Ferrites. Physical Review, 1955, vol. 99, pp. 1727-1735. [DOI:10.1103/PhysRev.99.1727]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb