Volume 29, Issue 4 (12-2021)                   www.ijcm.ir 2021, 29(4): 3-3 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alavi, Yadegari. Mineralogy, physico-chemical properties and industrial testing of ArazGoney kaolin deposit for ceramic and tile industry. www.ijcm.ir 2021; 29 (4) :3-3
URL: http://ijcm.ir/article-1-1677-en.html
Abstract:   (1396 Views)
Arazgoni Kaolin deposit is located in East Azarbaijan Province, about 18 km south of Qara Aghaj, the center of Charoymaq city. The area under investigation, in the geological zoning of Iran, is a part of the Urmia-Dokhtar volcanic-plutonic belt. Most of the study area is composed of volcanic rocks with Oligo-Miocene dacite-andesitic composition which have been strongly altered by hydrothermal alteration. Petrographic observations show that the main minerals in the dacite-andesites are plagioclase, pyroxene, quartz, biotite and alkaline feldspar and porphyritic texture is predominant. XRD analyzes show that kaolinite, albite and quartz minerals are present as the main minerals which accompanied by small amounts of orthoclase, mica, illite, pyrophyllite, montmorillonite and anatase as minor minerals. Aluminum and Silica are used as Determinant factors of Behavior and Quality of Products of Arazgoni Kaolin Samples, according to the ECC global standard, for evaluation of the quality in the ceramic and tile industry. Resistance of ceramic products in Arazgoni samples are high against thermal, tensile and compressive shocks. However, the amount of iron oxides and titanium in Arazgoni ceramic products does not have the desired quality compared to the ECC standard. The amount of potassium oxide in Arazgoni samples, that play a flux role in ceramic products, is within the ECC standard, which has reduced the deformation of ceramic products. The amount of SiO2, Al2O3, K2O and LOI in Arazgoni samples is within the ECC standard for the ceramic and tile industry. Due to the mineralogical and chemical composition of Arazgoni mine soil, it can be included in the group of kaolins that have low thermal expansion coefficient and high dry resistance. This soil, despite having a high viscosity and good dry resistance that it gives to the consumer, does not absorb much water, which causes no lubrication in the slurry and thus increases the consumption of expensive lubricants in the formulation. Very important features of this soil are high linear shrinkage, high dry strength and relatively low coefficient of thermal expansion.
Full-Text [PDF 5124 kb]   (717 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Berberian M., King G.C.P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences, 18 (1981) 210-265. [DOI:10.1139/e81-019]
2. [2] Shahabpour J., "Island-arc affinity of the Central Iranian volcanic belt", Journal of Asian Earth Sciences, 30 (2007) 652-665. [DOI:10.1016/j.jseaes.2007.02.004]
3. [3] Moradian A., "Geochemistry, geochronology and petrography of feldspathoid-bearing rocks in the Urumieh-Dokhtar volcanic belt, Iran", PhD thesis, University of Wollongong, New South Wales, Australia, (1997).
4. [4] Amidi S.M., "Étude géologique de la région de Natanz-Surk (Iran, Central)", Stratigraphie et petrologie. Geological Survey and Mineral Exploration of Iran, (1977).
5. [5] Aftabi A., Atapour H., "Regional aspects of shoshonitic volcanism in Iran", Episodes, 23 (2000) 119-125.
6. [6] Torabi Gh., "Subduction-related Eocene shoshonites from the Cenozoic Urumieh-Dokhtar magmatic arc (Qaleh-Khargooshi area, western Yazdprovince, Iran)", Turkish Journal of Earth Sciences 18 (2009) 583-613.
7. [7] Ebrahimi M., Esmaeili R., Aouizerat A., "New geodynamical model for regional Tertiary extension during the Zagros orogeny: A transtensional arc?", Iranian Journal of Earth Sciences, 9(2) (2017) 115-120.
8. [8] Dimitrijevic M.I., "Geology of Shar-e-Babak region", Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia, Report Yu/52, (1973).
9. [9] Dimitrijevic M.I., Dimitrijevic M.D., Djokovic, M. " Shar-e-Babak 1:100000 Geologic map", Geological Survey and Mineral Exploration of Iran, (1971).
10. [10] Hassanzadeh J., "Metallogenic and tectono-magmatic events in SE sector of the Cenozoic active continental margin of Central Iran (Shahr-Babak, Kerman province)", Ph.D thesis, University of California, (1993) 204 p.
11. [11] Shafiei B., "Exploration assessment and geodynamic model for the Kerman Cu metallogenic belt", Ph.D. thesis, Kerman Shahid Bahonar University, (1387) (in Persian).
12. [12] Taghipur N., "Application of isotopic and fluid inclusion geochemistry in as an exploration index in the Meiduk copper mine, Shahr-e-Babak", (1386) (in Persian).
13. [13] Hibbard M.J., "The magma mixing origin of mantled feldspars", Contribution to Mineralogy and Petrology, 76 (1981) 158-170. [DOI:10.1007/BF00371956]
14. [14] Kuscu G.G., Floyd P.A., "Mineral compositional and textural evidence for magma mingling in the Saraykent volcanics", Lithos, 56(2) (2001) 207-230. [DOI:10.1016/S0024-4937(00)00051-7]
15. [15] Raymond L.A., "The study of igneous sedimentary and metamorphic rocks", McGraw-Hill, (2002) 720 p.
16. [16] Kawabata H., Shuto K., "Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation", Journal of Volcanology and Geothermal Research, 140(4) (2005) 241-271. [DOI:10.1016/j.jvolgeores.2004.08.013]
17. [17] Nelson S.T., Montana A., "Sieve textured plagioclase in volcanic rocks produced by rapid decompression", American Mineralogist, 77 (1992) 1242-1249.
18. [18] Tsuchiyama A., "Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites", Contributions to Mineralogy and Petrology, 89 (1985) 1-16. [DOI:10.1007/BF01177585]
19. [19] Stormer J.C., "Mineralogy and petrology of the Raton-Clayton volcanic field northeastern New Mexico", Geologic. Soci. America. Bull., 83 (1972) 3299-3322. [DOI:10.1130/0016-7606(1972)83[3299:MAPOTR]2.0.CO;2]
20. [20] Renjith M.L., "Micro-textures in plagioclase from 1994-1995 eruption, Barren Island Volcanoe: Evidence of dynamic magma plumbing system in the Andaman subduction zone", Geoscience Frontiers, 5 (2014) 113-126. [DOI:10.1016/j.gsf.2013.03.006]
21. [21] Best M.G., Christiansen E.H., "Igneous petrology", Blackwell, (2001) 458 pp.
22. [22] Best M.G., "Igneous and metamorphic petrology", Blackwell Science, (2003) 729 pp.
23. [23] Stephen T., Nelson A.M., "Sieve-textured plagioclase in volcanic rocks produced by rapid decompression", American Mineralogist, 77 (1992) 1242-1249.
24. [24] Shelley D., "Igneous and metamorphic rocks under the microscope", Chapman and Hall, (1993) 445 p.
25. [25] Ruprecht P., Bergantz G.W., Cooper K.M., Hildreth W., "The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity", Journal of Petrology, 53(4) (2012) 801-840. [DOI:10.1093/petrology/egs002]
26. [26] Browne B.L., Eichelberger J.C., Patino L.C., Vogel T.A., Uto K., Hoshizumi H., "Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan", Journal of volcanology and geothermal research, 154(1) (2006) 103-116. [DOI:10.1016/j.jvolgeores.2005.09.022]
27. [27] Humphreys M.C., Blundy J.D., Sparks R.S.J., "Magma evolution and open-system processes at Shiveluch Volcano: Insights from phenocryst zoning", Journal of Petrology, 47(12) (2006) 2303-2334. [DOI:10.1093/petrology/egl045]
28. [28] Feely T. C., Sharp I. D., "Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers", Geology, 24 (1996) 1021-1024. https://doi.org/10.1130/0091-7613(1996)024<1021:CAHIEF>2.3.CO;2 [DOI:10.1130/0091-7613(1996)0242.3.CO;2]
29. [29] Rutherford M.J., Hill P.M., "Magma ascent rates from amphibole breakdown: An experimental study applied to the 1980-1986 Mount St. Helens eruptions", Journal of Geophysical Research, 98 (1993) 19667-19685. [DOI:10.1029/93JB01613]
30. [30] Donaldson C.H., Henderson C.M.B., "A new interpretation of round embayment quartz crystals", Mineralogical Magazine, 52 (1988) 27-33. [DOI:10.1180/minmag.1988.052.364.02]
31. [31] Vernon R. H., "A Practical Guide to Rock Microstucture", Cambridge University Press, Cambridge, (2004) 336 pp.
32. [32] Plechov P.Y., Tsai A.E., Shcherbakov V.D., Dirksen O.V., "Opacitization conditions of hornblende in Bezymyannyi volcano Andesites (March 30, 1956 Eruption) ", Petrology, 16(1) (2008) 19-35. [DOI:10.1134/S0869591108010025]
33. [33] Gill J.B., "Orogenic andesites and plate tectonics", Springer-Verlag, Berlin, (1981) 358 pp. [DOI:10.1007/978-3-642-68012-0]
34. [34] Le Bas M., Le Maitre R., Streckeisen A., Zanettin B., nd IUGS Subcommission on the Systematics of Igneous Rocks, "A chemical classification of volcanic rocks based on the total alkali-silica diagram", Journal of Petrology, 27(3) (1986) 745-750. [DOI:10.1093/petrology/27.3.745]
35. [35] Rollinson H.R., "Using geochemical data: Evaluation, presentation, interpretation", New York, John Wiley and Sons, (1993) 352 pp.
36. [36] Hastie A.R., Kerr A.C., Pearce J.A., Mitchell S.F., "Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram", Journal of Petrology, 48 (2007) 2341-2357. [DOI:10.1093/petrology/egm062]
37. [37] Shand S.J., "Eruptive rocks: Their genesis, composition, classification and their relation to ore-deposits with a chapter on meteorite", No. 552.1 S43 (1943).
38. [38] Dargahi S., "Miocene post collisional magmatism in Sarcheshmeh¬¬¬¬-Shahr-e-Babak area, northeast of Kerman: isotopic data, petrogenetic interpretation and geodynamic model for granitoid intrusions and the role of adakitic magmatism in Cu mineralization", Ph.D. thesis, Kerman Shahid Bahonar University, (1386) 311 pp. (in Persian).
39. [39] Lang J.R., "Isotopic and geochemical characteristics of Laramid igneous rocks in Arizona", Ph.D. thesis, University of Arizona (1991) 20 pp.
40. [40] Wood D.A., "The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province", Earth and planetary science letters, 50(1) (1980) 11-30. [DOI:10.1016/0012-821X(80)90116-8]
41. [41] Müller D., Rock N.M.S., Groves D.I., "Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study", Mineralogy and Petrology, 46(4) (1992) 259-289. [DOI:10.1007/BF01173568]
42. [42] Thompson R.N., "Magmatism of the British Tertiary volcanic province", Scottish Journal of Geology, 18(1) (1982) 49-107. [DOI:10.1144/sjg18010049]
43. [43] Glenn A.G., "The influence of melt structure on trace element partitioning near the peridotite solidus", Contributions to Mineralogy and Petrology, 147 (2004) 511-527. [DOI:10.1007/s00410-004-0575-1]
44. [44] Temizel İ., Arslan M.E.H.M.E.T., "Petrology and geochemistry of Tertiary volcanic rocks from the Likizce (ordu) area, NE Turkey: Implications for the evolution of the eastern Pontide paleo-magmatic arc", Journal of Asian Earth Scicencs, 31(4-6) (2008) 439-463. [DOI:10.1016/j.jseaes.2007.05.004]
45. [45] Kuster D., Harms U., "Post-collisional potassic granitoids form the southern and northwestern parts of the Late Neoproterozoic East African Orogen: A review", Lithos, 45 (1988) 177-195. [DOI:10.1016/S0024-4937(98)00031-0]
46. [46] Wilson M., "Igneous petrogenesis: A global tectonic approach", Unwin Hyman Ltd, (1989) 466 pp. [DOI:10.1007/978-1-4020-6788-4]
47. [47] Wu F., Jahnb B., Wildec S.A., Lod C.H., Yuie T.F., Lina Q., Gea W., Suna D., "Highly fractionated I-type granites in NE China: Isotopic geochemistry and implications for crustal growth in the Phanerozoic", Lithos 67(3-4) (2003) 191-204. [DOI:10.1016/S0024-4937(03)00015-X]
48. [48] Sun S.S., Mc Donough W.F., "Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In: Saunders, A. D. and Norry, M. J. (Eds.), magmatism in the ocean basins", Geological Society of London, Special Publications, 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
49. [49] Kamber B.S., Ewart A., Collerson K.D., Bruce M.C., McDonald G.D., "Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models", Contributions to Mineralogy and Petrology, 144 (2002) 38-56. [DOI:10.1007/s00410-002-0374-5]
50. [50] Srivastava R.K., Singh R.K., "Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton evidence for mantle metasomatism", Journal of Asian Earth Sciences, 23 (2004) 373-389. [DOI:10.1016/S1367-9120(03)00150-0]
51. [51] Boynton W.V., "Cosmochemistry of the rare earth elements: Meteorite studies", Developments in Geochemistry, 2 (1984) 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
52. [52] Kurum S., Onal A., Boztug D., Sper T., Arslan M., "Ar40/Ar39 age and geochemistry of the post-collisional Miocene Yamadag volcanics in the Arapkir area (Malatya province), eastern Anatolia, Turkey", Journal of Asian Earth Scicencs, 33 (2008) 229-251. [DOI:10.1016/j.jseaes.2007.12.001]
53. [53] Temizel I., "Petrochemical evidence of magma mingling and mixing in the Tertiary monzogabbroic stocks around the Bafra (Samsun) area in Turkey: Implications of coeval mafic and felsic magma interactions", Mineralogy and Petrology, 108(3) (2014) 353-370. [DOI:10.1007/s00710-013-0304-4]
54. [54] Geng H., Sun M., Yuan C., Xiao W., Zhao G., Zhang L., Wong K., Wu F., "Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction?", Chemical Geology, 266(3-4) (2009) 364-389. [DOI:10.1016/j.chemgeo.2009.07.001]
55. [55] Leeman W.P., Sisson V.B., "Geochemistry of boron and its implication for crustal and mantle processes", Reviews in Mineralogy and Geochemistry, 33(1) (1996) 645-707. [DOI:10.1515/9781501509223-014]
56. [56] Dostal J., Church B.N., Reynolds P.H., Hopkinson L., "Eocene volcanism in the Buck Creek basin, central British Columbia (Canada): Transition from arc to extensional volcanism", Journal of Volcanology and Geothermal Research, 170(1-3) (2001) 149-170. [DOI:10.1016/S0377-0273(00)00261-4]
57. [57] Nagudi N.O., Koberl C.H., Kurat G., "Petrography and geochemistry of the Sing granite, Uganda, and implication for its origin", Journal of African Earth Sciences, 35 (2003) 51-59.
58. [58] Shang G.K., Satir M., Siebel W., Nasifa E.N., Taubuld H., Liegeoise J.P., Tchoua F.M., "Geochemistry, Rb-Sr and Sm-Nd systematic: Case of the Sangmelima region, Ntem complex, southern Cameroon", Journal of African Earth Sciences, 40(1-2) (2004) 61-79. [DOI:10.1016/j.jafrearsci.2004.07.005]
59. [59] Barnes S.J., Acterberg E., Makovicky E., Li, C., "Proton probe results for partitioning of platinum group elements between mono-sulphide solid solution and sulphide liquid", South African Journal of Geology, 104 (2001) 337-351. [DOI:10.2113/gssajg.104.4.275]
60. [60] Zhou L., Mab C., She Z., "An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, Central China: Petrological, mineralogical and geochemical constraints", Geoscience Frontiers, 3(5) (2012) 635-646. [DOI:10.1016/j.gsf.2011.11.011]
61. [61] Pearce J. A., "Role of sub-continental lithosphere in magma genesis at active continental margins.In: continental basalts and mantle xenoliths. Hawkesworth, C.J. and Norry, M.J. (eds)", Nantwich: Shiva, (1983) 230-249.
62. [62] Mohajjel M., Fergusson C.L., Sahandi M.R., "Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, Western Iran", Journal of Asian Earth Sciences, 21(4) (2003) 397-412. [DOI:10.1016/S1367-9120(02)00035-4]
63. [63] Alavi M., "Sedimentary and Structural characteristics of the Paleo-Tethys remnants in northeastern Iran", Geological Society of America Bulletin, 103 (1391) 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
64. [64] Ghasemi A., Talbot C.J., "A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran)", Journal of Asian Earth Sciences, 26 (2005) 683-693. [DOI:10.1016/j.jseaes.2005.01.003]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb