Volume 28, Issue 3 (10-2020)                   www.ijcm.ir 2020, 28(3): 763-770 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehdikhani, Saeedi Razavi. Effect of increasing corundum on mechanical properties of silicon carbide refractories. www.ijcm.ir 2020; 28 (3) :763-770
URL: http://ijcm.ir/article-1-1528-en.html
Abstract:   (1483 Views)
Oxide materials such as Al2O corundum has a great influence on the mechanical and oxidation properties of refractory or refractory materials. In this paper, the effect of Al2O3 powder density, apparent porosity, linear shrinkage, and oxidation resistance of SiC composite refractory materials is investigated. Meanwhile, the compressive and flexural strengths were investigated before and after heat treatment. The mechanisms of oxidation resistance of SiC composite refractory materials have been investigated by using atmospheric heating at temperatures above 1400°C. The microstructures and phases, that formed in this research, have been investigated by corundum enhancement, using (SEM) scanning electron microscopy. Increasing the amount of Al2O3 reduces the linear shrinkage and consequently increases the density and mechanical strength. Moreover, with the maximum values ​​obtained by adding Al2O3 at 8 wt%, the flexural strength was initially increased and then decreased.
Full-Text [PDF 986 kb]   (364 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Izhevsikyi VA, Genova LA., "Microstructure and properties tailoring of liquid-phase sintered SiC", International Journal of Refractory Metal & Hard Materials. 2001; 19:407-409. [DOI:10.1016/S0263-4368(01)00015-4]
2. [2] Jensen R.P., Luecke E.W., "High-temperature properties of liquid-phase-sintered α-iC", Materials Science and Engineering A. 2000; 282:109-114. [DOI:10.1016/S0921-5093(99)00769-8]
3. [3] Kim Y.W., Kim J.Y., "Effect of initerial particle size on microstructure of liquid-phase sintered α-silicon carbide, Journal of the European Ceramic Society. 2000; 20:945-949. [DOI:10.1016/S0955-2219(99)00239-3]
4. [4] Lee Y., Kim Y.W., "Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering", Journal of American Ceramic Society. 2003; 86(10):1803-1805. [DOI:10.1111/j.1151-2916.2003.tb03560.x]
5. [5] Liden E., "Carlstrom E. Homogeneous distribution of sintering additives in liquid-phase sintered silicon carbide", Journal of the American Ceramic Society. 1995; 78(7):1761-1768. [DOI:10.1111/j.1151-2916.1995.tb08886.x]
6. [6] Samanta A.K., Dhargupta K.K., "Decomposition reactions in the SiC-Al-Y-O system during gas pressure sintering. Ceramics International", 2001; 27:123-133. [DOI:10.1016/S0272-8842(00)00050-X]
7. [7] Magnani G., Sico G., Brentari A., Fabbri P., "Solid-state pressureless sintering of silicon carbide below 2000 ◦C", Journal of the European Ceramic Society. 34 (2014) 4095-4098. [DOI:10.1016/j.jeurceramsoc.2014.06.006]
8. [8] She J.H., Ueno K., "Effect of additive content on liquid-phase sintering on silicon carbide ceramics", Materials Research Bulletin. 1999; 34(10-11):1629-1636. [DOI:10.1016/S0025-5408(99)00172-5]
9. [9]. She J.H., Ueno K., "Densification behavior and mechanical properties of pressureless-sintered silicon carbide ceramics with alumina and yttria additions", Materials Chemistry and Physics. 1999; 59:139-142. [DOI:10.1016/S0254-0584(99)00039-5]
10. [10] van Dijen F.K., Mayer E., "Liquid phase sintering of silicon carbide", Journal of the European Ceramic Society. 1996; 16:413-420. [DOI:10.1016/0955-2219(95)00129-8]
11. [11] Ye H., Pujar V.V., "Coasening in liquid-phase-sintered α-SiC", Acta mater. 1999; 47(2):481-487. [DOI:10.1016/S1359-6454(98)00371-1]
12. [12] Zhang L., Ru H.Q., "Sintering behavior and mechanical properties of the powder mixtures of SiC/YAG ceramics", Journal of Northeastern University (Natural Science) 2002; 23(7):667-670.
13. [13] Zhou Y., Hirao K., "Fracture-mode change in alumina-silicon carbide composites doped with rare-earth impurities", Journal of the European Ceramic Society. 2003; 24:265-270.
14. [14] Prochazka S., "U.S. Patent", 3 (1974) 853.566.
15. [15] Ihle J., Hermann M., Adler J., "Phase formation in porous liquid phase sintered silicon carbide: Part III: Interaction between Al2O3-Y2O3 and SiC", Journal of the European Ceramic Society. 25(7): 1005-1013. [DOI:10.1016/j.jeurceramsoc.2004.04.017]
16. [16] Lee J. K., Park J. G., Lee E. G., Seo D. S., Hwang Y., "Effect of starting phase on microstructure and fracture toughness of hot-pressed silicon carbide", Materials Letters. 57(1) (2002) 203-208. [DOI:10.1016/S0167-577X(02)00765-6]
17. [17] Prochazka S., "High performance application. In: Proceedings of the Second Army Materials Technology Conference", Burke J.J. Gorum A.E., and Katz R.N. (Eds.), (1975) pp. 235-252.
18. [18] Cutler R.A., Jackson T.B., "Ceramic materials and component for engines. In: Proceedings of the Third International Symposium", Tennery V.J. (Ed.), pp. 309-318.
19. [19] She J.H., Ueno K., "Effect of additive content on liquid phase sintering on silicon carbide ceramics", Materials Research Bulletin. 34(10/11): (1999) 1629-1636. [DOI:10.1016/S0025-5408(99)00172-5]
20. [20] Omari M., Takei H., "Pressureless sintering of of SiC", Journal of the American Ceramic Society. 65(6) (1982) C92. [DOI:10.1111/j.1151-2916.1982.tb10460.x]
21. [21] Humminger R., "Carbon inclusion in sintered silicon carbide", Journal of the American Ceramic Society. 72 (1989) 1741-1744. [DOI:10.1111/j.1151-2916.1989.tb06317.x]
22. [22] Liang H., Yao X., Zhang J., Liu X., Huang Z., "Low temperature pressureless sintering of-silicon carbide with Al2O3 and CeO2 as additives", Journal of the European Ceramic Society.34 (2014) 831-835. [DOI:10.1016/j.jeurceramsoc.2013.09.015]
23. [23] Magnani G., Minocari G.L., Piloti L., "Flexural strength and toughness of liquid phase sintered silicon carbide", Ceramic International. 26 (2000) 495-500. [DOI:10.1016/S0272-8842(99)00084-X]
24. [24] Zhao Y., Tanaka H., Otani S., Bando Y., "Low temperature pressureless sintering of -silicon carbide with Al2C3, B4C and C as additives", Journal of the American Ceramic Society. 82 (1999) 1959-1964. [DOI:10.1111/j.1151-2916.1999.tb02026.x]
25. [25] Lorrette C., Reau A., Briottet L., "Mechanical properties of nanostructured silicon carbide Consolidated by spark plasma sintering", Journal of the European Ceramic Society. 33 (2013) 147-156. [DOI:10.1016/j.jeurceramsoc.2012.07.030]
26. [26] Hayun S., Paris V., Mitrani R., "Microstructure and mechanical properties of silicon carbide processed by spark plasma sintering (SPS)", Ceramic International. 38: 5335-6340. [DOI:10.1016/j.ceramint.2012.05.003]
27. [27] German R. M., Suri P., Park S. J., "Review: liquid phase sintering", Journal of Materials Science. 44(1) (2008) 1-9. [DOI:10.1007/s10853-008-3008-0]
28. [28] Lee Y.K., Kim Y.M., Mitomo M., Kim D.Y., "Fabrication of dense nanostructured silicon carbide ceramics through two step sintering", Journal of the American Ceramic Society. 86 (2003) 1803-1805. [DOI:10.1111/j.1151-2916.2003.tb03560.x]
29. [29] https://rasekhoon.net/search/article
30. [30] Galusek D., Ghillanyova K., Sedlacek J., KKozankova J., Sajgalik P., "The influence of additives on microstructure of sub-micron alumina ceramics prepared by two stage sintering", Journal of the European Ceramic Society. 32: 1965-1970. [DOI:10.1016/j.jeurceramsoc.2011.11.038]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb