Volume 26, Issue 3 (10-2018)                   www.ijcm.ir 2018, 26(3): 689-702 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Siahcheshm K, Alijani L, calagari A A, Ahin B. The Mineral chemistry and Geothermometry of Sphalerite and Galena in Changoreh epithermal deposit, NW of Takestan: implication to type of mineralization. www.ijcm.ir. 2018; 26 (3) :689-702
URL: http://ijcm.ir/article-1-1152-en.html
University of Tabriz
Abstract:   (590 Views)
The study area is located about 25 km northwest of Takestan city, within Tarom-e-Sofla metallogenic belt. This area is covered by a widespread Eocene andesite to dasite volcanic rocks affected by Oligo-Miocene monzogranite to granodiorite igneous bodies which altered them to silicic, argillic zones as long as hypogene sulfide vein-veinlet mineralization (e.g. galena, sphalerite, pyrite, rare chalcopyrite and tetrahedrie- tennantite) occurred along with supergene minerals (e.g anglesite, cerussite, malachite, covellite and goethite in oxide zone). This study concentrated on geochemistry and geo-barometry of sphalerite and galena to evaluate sulfidation state, temperature and type of ore formation. During mineralography studies, two types of galena were recognized: 1) high temperature, brecciated veinlet type including tetrahedrite and, 2) low temperature coarse grained type along with colloform sphalerite. Based upon mineral chemistry of sphalerite, average concentration of Cd, Ga, Ge, Zn/Cd and Ga/Ge ratios were 5870, 970, 1380, 165.4 and 1.39, respectively. Ga/Ge ratios of sphalerites geothermometry indicate that the formation temperatures of sphalerite are between 170°C and 220°C. The amount of log aS2 hydrothermal fluid (-11.5 to -13.5), calculated from FeS content (0.33-0.80 mol%) in sphalerite, can be attributed to moderate sulfidation state for changoreh deposit. According to Sb/Bi in galena geo-thermometer, geochemistry of sphalerite (low ∑Sred activites, moderate Cd content (5870 ppm) and average Zn/Cd ratio (165.4), physico-chemical and thermodynamics of ore-bearing fluid in Changoreh is in accordance with moderate to high temperature epithermal deposits.
Full-Text [PDF 129 kb]   (180 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/09/25 | Accepted: 2018/09/25 | Published: 2018/09/25

1. [1] Zamin Fanavaran Poya., "Preliminary Report on prospecting and exploration of Changureh Pb deposit in the North of Takestan" (2004), 125 p.
2. [2] Scott S.D., "Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments", Mineral. Mag 47 (1983) 427-435. [DOI:10.1180/minmag.1983.047.345.03]
3. [3] Deer F. R. S., Howie R. A., Zussman J., "An introduction to the rock forming minerals", Longman Scientific & Technical, Seventeenth impression (1378) 528p.
4. [4] Boyle R. W., Jambor J. L., "The geochemistry and geothermometry of sphalerite in the lead-zinc-silver lodes of the Keno Hill-Galena Hill area, Yukon", Can. Mineral 7 (1963) 479–496.
5. [5] Viets J.G., Hopkins R.T., Miller B.M., "Variations in minor and trace elements in sphalerite from Mississippi Valley-Type deposits of the Ozark region: genetic implications", Economic Geology 87 (1992) 1897-1905. [DOI:10.2113/gsecongeo.87.7.1897]
6. [6] Ehtesham Z., "Lithogeochemical and Economic Geology Analysis of the Haft Sandogh district, North of Takestan, Qazvin Province" M.s. thesis on Economic Geology, University of Tabriz (2015), 90 p.
7. [7] Nabavi M., "Preface to Iran Geology". Geological Survey & Mineral Explorations of Iran (GSI) (1976) 109 p.
8. [8] Aghanabati E., "Geology of Iran". Geological Survey & Mineral Explorations of Iran (GSI) (2004) 586 p.
9. [9] Nabi T., Mehrania S. R., Eslami H., "Study of lead mineralization in the Changureh region - Northwest of Takestan (Qazvin province)". The 19th Iranian Geological Society conference and the 9th National Geological Conference of Payame Noor University (2015).
10. [10] Azizi B., Makizadeh M.A., "The origin of hydrothermal alteration using stable isotopes in the Takestan region (lower Tarom zone)". Journal of Economic Geology, 1 (2009) 115-101.
11. [11] Alijani L., "Study of economic geology and genesis of Changureh polymetal with emphasis on Lead mineralization, Northwest of Takestan, Qazvin Province". M.s. thesis on Economic Geology, University of Tabriz (2015), 102 p.
12. [12] Costagliola P., Di Benedetto F., Benvenuti M., Bernardini G.P., Cipriani C., Lat‌tanzi P.F., Romanelli M.,"Chemical speciation of Ag in galena by EPR spectroscopy". American Mineralogist 88 (2003)1345–1350. [DOI:10.2138/am-2003-8-918]
13. [13] Renock D., Becker U., "A first principles study of coupled substitution in galena", Ore Geology Reviews 42 (2011) 71–83. [DOI:10.1016/j.oregeorev.2011.04.001]
14. [14] George L., Cook N. J., Ciobanu C. L., Wade B. P.,"Trace and minor elements in galena: A reconnaissance LA-ICP-MS study". Am. Mineral. 100 (2015) 548-569. [DOI:10.2138/am-2015-4862]
15. [15] Amcoff O., "The solubility of silver and antimony in galena". Neues Jahrbuch für Mineralogie Monatshefte 6 (1976) 247-261.
16. [16] Atanassova R., Bonev I. K., "Two crystallographically different types of skeletal galena associated with colloform sphalerite", Mineral. Petrol 44 (2006) 1–18.
17. [17] Barrie C. D., Boyce A. J., Boyle A., Williams P. C. K., Blake J. K., Wilkinson J. J., Lowther M., Mcdermott P., Prior D. J., "On the growth of colloform textures: a case study of sphalerite from the Galmoy ore body, Ireland", J. Geol. Soc. London 166 (2009) 563–582. [DOI:10.1144/0016-76492008-080]
18. [18] Zotov A.V., Kudri, A.V., Levin K.A., Shikina N.D., Varyash L.N., "Experimental studies of the solubility and complexing of selected ore elements (Au, Ag, Cu, Mo, As, Sb, Hg) in aqueous solutions", (1995) 95-132. In: Shmulovich K.I., Yardley B.W.D., Gonchar G.G., (eds.), Fluids in the Crust: Equilibrium and transport properties, Chapman and Hall, London, 323 p.
19. [19] Acero P., Cama J., Ayor C., "Rate law for galena dissolution in acidic environment", Chem Geol 245 (2007), 219-229. [DOI:10.1016/j.chemgeo.2007.08.003]
20. [20] Szczerba M., Sawlowicz Z., "Remarks on the origin of cerussite in the Upper Silesian Zn-Pb deposits, Poland", Mineralogia 40 (2009) 53-64. [DOI:10.2478/v10002-009-0002-3]
21. [21] Forghani Tehrani G., Gheshlaghi A., "Mining wastes: specification, purification and environmental impacts", Shahrood University of Technology (2016), 600 p.
22. [22] Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming mineral. American mineralogist, 95(1), 185. [DOI:10.2138/am.2010.3371]
23. [23] Moller P., " Development and application of the Ga/Ge-Geothermometer for sphalerite from sediment hosted deposits", In Germann K. (ed.), Geochemical aspects for Ore Formation in Recent and Fossil Sedimentary Environments", (1985) 15-30.
24. [24] Geletii V.F., Chernishev L.V., Pastushkova T.M., "Distribution of cadmium and manganese between galena and sphalerite", Geologiia Rudnykh Mestoozhdenii 21 (1979) 66-75.
25. [25] Wu Y., Hagni R.D., Paarlberg N., "Silver distribution in iron sulphides at the Buick and Brushy Creek Mines, Viburnum Trend, southeast Missouri", Society of Economic Geologists 4 (1996) 577-587.
26. [26] Cook N. J., Ciobanu C. L., Pring A., Skinner W., Shimizue M., Danyushevsky L., Saini-Eidukat B., Melcher F., "Trace and minor elements in sphalerite: A LA-ICPMS study" Geochim. Cosmochim. Acta 73 (2009) 4761–4791. [DOI:10.1016/j.gca.2009.05.045]
27. [27] Ye L., Cook N. J., Ciobanu C. L., Liu Y. P., Zhang Q., Gao W., Yang Y. L., Danyushevsky L. V., "Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study" Ore Geol. Rev 39 (2011) 188–217. [DOI:10.1016/j.oregeorev.2011.03.001]
28. [28] Marques de Sá, C., Noronha F., "Ga/Ge in Sphalerite Geothermometer - Aplication to Braçal Deposit", Comunicações Geológicas 99 (2012) 5-10.
29. [29] Song X., "Minor Elements and Ore Genesis of the Fankou Lead-Zinc deposit, China" Mineralium Deposita 19 (1984) 95-104.
30. [30] Monterio et al., 2005. Geology, "petrography, and mineral chemistry of the Vazante no sulfide and Ambrosia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais", Brazil. Ore Geology Reviews, 34 p.
31. [31] Barnes H. L., "Geochemistry of hydrothermal ore deposits" (1997) John Wiley Sons.
32. [32] Lusk J., Calder B.O.E., "The composition of Sphalerite and associated sulfides in reactions of the Cu-Fe-Zn-S, Fe-Zn-S and Cu-Fe-S systems at 1 bar and temperatures between 250 and 535ºC", Chemical Geology 203 (2004) 319-345. [DOI:10.1016/j.chemgeo.2003.10.011]
33. [33] Scott S.D., Barnes H., "Sphalerite geothermometry and geobarometry". Econ Geol 66 (1971) 653-669. [DOI:10.2113/gsecongeo.66.4.653]
34. [34] Einaudi, M.T., Hedenquist, J.W., and Inan E.E., 2003. Sulfidation State of Fluids in Active and Extinct Hydrothermal Systems: transitions from Porphyry to Epithermal Environments. Society of Economic Geologists, Special Publication 10, 285-313.
35. [35] John D.A., Garside L.J., Wallace A.R., "Magmatic and tectonic setting of Late Cenozoic epithermal gold-silver deposits in northern Nevada, with an emphasis on the Pah Pah and Virginia Ranges and the Northern Nevada Rift" Geological Society of Nevada Special Publication 29 (1999) 64-158.
36. [36] Wen H., Zhu C., Zhang Y., Cloquet C., Fan H., Fu S., "Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits", Sci. Rep., (2016), doi:10.1038/srep25273. [DOI:10.1038/srep25273]
37. [37] Schmitt A. D., Galer S. J. G., Abouchami W., "High-precision cadmium stable isotope measurements by double spike thermal ionization mass spectrometry". J. Anal. Atom. Spectrom 24 (2009) 1079–1088. [DOI:10.1039/b821576f]
38. [38] Sverjensky D. A., Shock E. L., Helgeson H. C., "Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kbar" Geochim Cosmochim Acta 61 (1997) 1359–1412. [DOI:10.1016/S0016-7037(97)00009-4]
39. [39] Bazarkina E. F., Pokrovski G. S., Zotov A. V., Hazemann, J.L., "Structure and stability of cadmium chloride complexes in hydrothermal fluids" Chem. Geol. 276 (2010) 1–17. [DOI:10.1016/j.chemgeo.2010.03.006]
40. [40] Tagirov B. R., Seward T. M., "Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite" Chem. Geol. 269 (2010) 301–311. [DOI:10.1016/j.chemgeo.2009.10.005]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb