Volume 32, Issue 3 (10-2024)                   www.ijcm.ir 2024, 32(3): 487-508 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabbarzadeh Z, Siahcheshm K, Calagari A A. Geochemistry and magmatic origin studies in the rock units of the mineralization occurrence at Tazehkand, Northeast of Zanjan. www.ijcm.ir 2024; 32 (3) :487-508
URL: http://ijcm.ir/article-1-1882-en.html
1- Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
Abstract:   (651 Views)
The Tazekand mineral prospect, as a part of Tarom-Hashtjin metallogenic belt, is located ~45 km northeast of Zanjan City, NW Iran. Based on field, petrographic and geochemistry investigations, the lithological composition of the intrusive rocks in the area varies from monzonite, diorite, granodiorite to gabbro and the volcanic units range of trachy andesite, andesite to basaltic andesite. These rocks with per-aluminous to meta-aluminous nature, are related to High-K calc-alkaline to shoshonitic magmatic series, and belong to I-type granites. Based on the diagrams illustrating the tectonic setting, these rocks formed in a post-collision volcanic arc environment on an active continental margin. In the Harker diagrams, SiO2 has negative correlation with Al2O3, MgO, MnO, CaO, Fe2O3, P2O5, TiO2, Co, V, Sr, Ni and Cr and positive correlation with K2O, Na2O, Zr and Rb. Enrichment of LILE (Cs, Ba, Rb, Th, U and Pb) and LREE and depletion of elements with high field strength (Ti, Y, Zr, Nb and Dy) and HREE are other geochemical features in the Tazekand intrusive rocks. On the basis of geochemical data, both mantle and crust components have been effective in the formation of magma for the studied intrusive rocks. The magma producing of these rocks is formed by the mixing of basaltic melts derived from the mantle and the melt resulting from the partial melting of the lower crust in balance with pyroxene and amphibole residues at a depth of less than 40 km.
Full-Text [PDF 3302 kb]   (70 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Alavi M.,''Tectonic map of the Middle East: Scale1:5,000,000 Tehran (in Persian)'', Geological Survey of Iran (1991).
2. [2] Azizi H., Jahangiri A., "Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran", J. Geodyn, 45 (2008) 178-190. [DOI:10.1016/j.jog.2007.11.001]
3. [3] Azizi H., Moinevaziri H., "Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran", J. Geodyn. 47(2009) 167-179. [DOI:10.1016/j.jog.2008.12.002]
4. [4] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., "Late Eocene-Oligocene Post-Collisional Monzonitic Intrusions from the Alborz Magmatic Belt, NW Iran. An Example of Monzonite Magma Generation from a Metasomatized Mantle Source", Lithos 180-181 (2013)109-127. [DOI:10.1016/j.lithos.2013.08.003]
5. [5] Simmonds V., Moazzen M., Mathur R., "Constraining the timing of porphyry mineralization in northwest Iran in relation to Lesser Caucasus and Central Iran; Re-Os age data for Sungun porphyry Cu-Mo deposit", International Geology Review 59 (2017) 1561-1574. [DOI:10.1080/00206814.2017.1285258]
6. [6] Aghazadeh M., Hou Z., Badrzadeh Z., Zhou L.,"Temporal-Spatial Distribution and Tectonic Setting of Porphyry Copper Deposits in Iran: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology", Ore Geology Reviews 70 (2015) 385-406. [DOI:10.1016/j.oregeorev.2015.03.003]
7. [7] Nabatian, G., Jiang, S. Y., Honarmand, M. and Neubauer, F., "Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran", Lithos 244 (2016) 43-58. [DOI:10.1016/j.lithos.2015.11.020]
8. [8] Nabatian G., Ghaderi M., Corfu F., Neubauer F., Bernroider M., Prokofiev V., Honarmand M., "Geology, alteration, age and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran", Mineralium Deposita 49 (2014) 217-234. [DOI:10.1007/s00126-013-0484-1]
9. [9] Aghazadeh M., Castro A., Rashidnejad Omran N., Emami M.H., Moinvaziri H., Badrzadeh Z., "The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran", J. Asian Earth Sci. 38 (2010) 199-219. [DOI:10.1016/j.jseaes.2010.01.002]
10. [10] Ajali N., Torkian A., Tale Fazel E., "Rasht abad Copper-Gold intermediate sulfidation epithermal deposit (north of Zanjan): Evidence of mineralization, Fluid inclusion and stable isotope C-O (in Persian)", Iranian Journal of Crystallography and Mineralogy, 29 (2021) 207-220. [DOI:10.52547/ijcm.29.1.207]
11. [11] Kouhestani H., Mokhtari M.A.A., Kezhang Q., Junxing Z., " Fluid inclusion and stable isotope constraints on ore genesis of the Zajkan epithermal base metal deposit, Tarom-Hashtjin metallogenic belt, NW Iran" , Ore Geology Reviews, Vol:109 (2019) p:564-584. [DOI:10.1016/j.oregeorev.2019.05.014]
12. [12] Yasami N., Ghaderi M., Madanipour S., Taghilou B.,"Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran", Ore Geology Reviews, 86 (2017) 212-224. [DOI:10.1016/j.oregeorev.2017.01.028]
13. [13] Kouhestani H., Azimzadeh A.M., Mokhtari, M.A.A., Ebrahimi M., "Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. Neues Jahrbuch für Mineralogie Abhandlungen", Journal of Mineralogy and Geochemistry, 194 (2017) 139-155. [DOI:10.1127/njma/2017/0036]
14. [14] Mehrabi B., Ghasemi Siani M., Goldfarb R., Azizi H., Ganerod M., Marsh E.E., "Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran", Ore Geology Reviews 78 (2016) 41-57. [DOI:10.1016/j.oregeorev.2016.03.016]
15. [15] Amini B., "Geological map of IRAN 1:100000 Tarom (in Persian)", Geological Survey of Iran (2000)
16. [16] Whitney, D.L. and Evans, B.W.," Abbreviations for names of rock-forming minerals", American Mineralogist, 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
17. [17] Middlemost E.A.K., "Magmas and magmatic rocks", Longman Publication Company, London (1985).
18. [18] Middlemost E.A.K., "Naming materials in magma/igneous rock system", Earth Sci Rev, 37 (1994) 215-224. [DOI:10.1016/0012-8252(94)90029-9]
19. [19] Shand S. J., "Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relatio to Ore-Deposits with a Chapter on Meteorite", JohnWiley & Sons, New York (1943).
20. [20] Waight T. E., Weaver S. D., Muir R. J., Maas R., Eby, N., :The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H2O contents and generated during tectonic transition:, Contribution to Mineralogy and Petrology, 130 (1998) 225-239. [DOI:10.1007/s004100050362]
21. [21] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks in Turkey", Contrib. Mineral. Petr, 68 (1976) 63-81. [DOI:10.1007/BF00384745]
22. [22] Chappell B. W., White A. J. R., "I- and S-type granites in the Lachlan Fold Belt", Transactions of the Royal Society of Edinburgh: Earth Sciences 83(1992) 1-26. [DOI:10.1130/SPE272-p1]
23. [23] Pearce J.A., Harris N.B.W., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology, 25 (1984) 956-983. [DOI:10.1093/petrology/25.4.956]
24. [24] Pearce, J.A., "Source and setting of granitic rocks", Episodes 19 (1996) 120-125. [DOI:10.18814/epiiugs/1996/v19i4/005]
25. [25] Schandl E. S., Gorton MP., "Application of high field strength elements to discriminate tectonic setting in VMS environments", Economic Geology.97 (2002) 629-642. [DOI:10.2113/gsecongeo.97.3.629]
26. [26] Kuscu G. G. and Geneli F. "Review of post-collisional volcanism in the central Anatolian volcanic province (Turkey) with special reference to the Topekoy volcanic complex", International Journal of Earth Sciences, 99 (2010) 593-621. [DOI:10.1007/s00531-008-0402-4]
27. [27] Pearce J. A. Norry M. J. "Petrogenetic implication of Ti, Zr, Y and Nb variations in volcanic rocks", Contributions to Mineralogy and Petrology, 69 (1979) 33-47. [DOI:10.1007/BF00375192]
28. [28] Harker A., "The natural history of the igneous rocks", New York The Macmillan Company (1909) 384.
29. [29] Morata D., Aguirre L., "Extensional lower Cretaceous volcanism in the Coastal Range (29 20-30S), Chile", geochemistry and petrogenesis, Journal of South American Earth Science, 16 (2003) 459-476. [DOI:10.1016/j.jsames.2003.06.001]
30. [30] Chappell B.W., "Aluminium saturation in Iand S-type granites and the characterization of fractionated haplogranites", Lithos 46 (1999)535-551. [DOI:10.1016/S0024-4937(98)00086-3]
31. [31] Mason B. H. Moore C. B. "Principles of geochemistry". 4th edition, Wiley Publication, New York, US, (1982).
32. [32] McLemore V.T., McMillan N.J., Heizler M., McKee C., "Cambrian alkaline rocks at Lobo Hill, Torrance County, New Mexico: More evidence for a Cambrian-Ordovician aulacogen". In: Pazzaglia, F., Lucas, S.G. & Austin, G. S. (eds.) Albuquerque Country III. New Mexico Geological Society, Guidebook 50 (1999a) 247-253. [DOI:10.56577/FFC-50.247]
33. [33] Rollinson HR., "Using Geochemical Data: Evaluation, Presentation, Interpretation", Longman Scientific and Technical, New York (1993) 352.
34. [34] Boynton W.V., "Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry", Elsevier, Amsterdam (1984) 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
35. [35] Nagudi B. Koeberl C. Kurat G. "Petrography and geochemistry of the Singo granite, Uganda, and implication for its origin", Journal of African Earth Science, 36 (2003) 73 - 87. [DOI:10.1016/S0899-5362(03)00014-9]
36. [36] McDonough W. F., S. S. Sun., "The composition of the Earth", Chem. Geol., 120 (1995) 223-253. [DOI:10.1016/0009-2541(94)00140-4]
37. [37] Wilson M., "Igneous petrogenesis: A global tectonic approach", Unwin Hymen, London, (1989) 466. [DOI:10.1007/978-1-4020-6788-4]
38. [38] Wu F.Y., Jahn B.M., Wilde S.A, Lo C.H, Yui T.F., Lin Q., Ge W.C., Sun D.Y.,"Highly fractionated I type granites in NE China (I): Geochronology and petrogenesis", Lithos, 66 (2003) 241-273. [DOI:10.1016/S0024-4937(02)00222-0]
39. [39] Reagan M.K., Gill J.B., "Coexisting calc-alkaline and high niobium basalts from Turrialba volcano, Costa Rica: implication for residual titanates in arc magma source". J. Geophys. Res, 94 (1989) 4619-4633. [DOI:10.1029/JB094iB04p04619]
40. [40] Zhou J.B., Wilde S.A. Zhang X.Z., Zhao G.C., Zheng C.Q., Wang Y.J., Zhang X.H., "The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt", Tectonophysics, 478 (2009a) 230-246. [DOI:10.1016/j.tecto.2009.08.009]
41. [41] Mirnejad H., Mathur R., Hassanzadeh J., Shafie B., Nourali S., "Linking Cu mineralization to host porphyry emplacement: Re-Os ages of molybdenites versus U-Pb ages of zircons and sulfur isotope compositions of pyrite and chalcopyrite from the Iju and Sarkuh porphyry deposits in southeast Iran". Econ. Geol. 108 (2013) 861-870. [DOI:10.2113/econgeo.108.4.861]
42. [42] Buret Y., Wotzlaw J.F., Roozen S., Guillong M., von Quadt A., Heinrich C.A. "Zircon petrochronological evidence for a plutonic-volcanic connection in porphyry copper deposits", Geology, 45 (2017) 623-626. [DOI:10.1130/G38994.1]
43. [43] Gao Y., Hou Z., Kamber B. S., Wei R., Meng X., Zhao R., "Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism" Contributions to Mineralogyand Petrology, 153 (2007) 105-120. [DOI:10.1007/s00410-006-0137-9]
44. [44] De Yoreo J. J., Lux D. R., Guidotti C. V., "The role of crustal anatexis and magma migration in the thermal evolution of regions of thickened continental crust. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts", Geol Soc London Spec Publ 43 (1989) 187-202. [DOI:10.1144/GSL.SP.1989.043.01.12]
45. [45] Defant M.J., Drummond M.S., "Derivation of some modern arc magmas by melting of young subducted lithosphere", Nature 347(1990) 662-665. [DOI:10.1038/347662a0]
46. [46] Martin H., "Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas", Geology 14 (9) (1986)753-756. https://doi.org/10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2 [DOI:10.1130/0091-7613(1986)142.0.CO;2]
47. [47] Kay S.M., Mpodozis C., "Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust", GSA TODAY (Geol Soc Am) 11(2001) 4-9. https://doi.org/10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2 [DOI:10.1130/1052-5173(2001)0112.0.CO;2]
48. [48] Haschke M., Siebel W., Gunther A., Scheuber, E., "Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21º-26ºS)", Journal of Geophysical Research 107 (BI) (2002) NO. 10.1029/2001JB000328, ECV 6-1 - ECV 6-18. [DOI:10.1029/2001JB000328]
49. [49] Furman T., "Geochemistry of East African Rift Basalts: on overview". Journal of African Earth Science, 47 (2-3) (2007) 147-160. [DOI:10.1016/j.jafrearsci.2006.06.009]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb