Volume 31, Issue 4 (12-2023)                   www.ijcm.ir 2023, 31(4): 663-682 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akhshani A, Moayyed M, Amel N, Kamali A A, Fadaeian M. Mineral chemistry of gabbro- dioritic xenoliths in Monavvar volcanic rocks (Northwest of Tabriz- NW Iran). www.ijcm.ir 2023; 31 (4) :663-682
URL: http://ijcm.ir/article-1-1837-en.html
1- Department of Geology, University of Tabriz, Tabriz 51664, Iran
2- Research institute of Cultural Heritage & Tourism
3- Department of Geology, Payame Noor University, Tehran, Iran
Abstract:   (675 Views)
The studied area is located in the northwest of Iran within the western Alborz- Azerbaijan zone. The host rocks of the studied xenoliths are basaltic andesite and andesite. Xenoliths in volcanic rocks include gabbroic and diorite xenoliths. The main minerals of xenoliths include plagioclase, amphibole and clinopyroxene with minor minerals including biotite, orthopyroxene and opaque minerals. The main texture of xenoliths is granular and microlithic porphyric. Based on mineral chemistry, the composition of plagioclase, amphibole, pyroxene and biotite is oligoclase to andesine, chermakite to hornblende, augite and stonite respectively. Based on AlIV value (less than 1.5), amphiboles of xenoliths are placed in the active subduction-related continental margin. The thermo-barometric measurement of xenoliths, using the amount of total aluminum cations, indicates a pressure of 5.8 ± 0.6 kbar and a temperature of about 802°C in the crystallization environment. The studied clinopyroxenes with sub-alkaline composition show good compatibility with magmatic arc tectonic environment. Also, clinopyroxenes are formed in low to medium pressures, which indicates their crystallization during magma ascent at different depths. The amount of ferric iron in clinopyroxenes indicates the high fugacity of oxygen magma. The clinopyroxenes of diorite-gabbroic xenoliths were formed at a pressure of 12 kilobars and a temperature of about 1050°C.
Full-Text [PDF 3503 kb]   (66 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Stocklin J., "Structural history and tectonics of Iran", American Association of Petroleum Geologists Bulletin 1968, 52, 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
2. [2] Amel N., "Petrological study of the volcanic belt north of the Tabriz fault (Manoor region)", University of Tabriz, 1995.
3. [3] Amel N., Moayyed M., Ameri A., Vosoghi Abedini M., Moazzen M., "Petrogenesis of Plio-Quaternary basalts in Azerbaijan, NW Iran and comparisons them with similar basalts in the east of Turkey", Iranian Journal of Crystallography and Mineralogy 2008, 16, 327-340.
4. [4] Amel N., "Petrology and Petrogenesis of Plio- Quaternary magmatic rocks of Azerbaijan- NW Iran", University of Tabriz, 2008.
5. [5] Gharechahi Z., "Geochemical and mineral chemistry studies of Lamprophyric rocks of East Azarbaijan Province", University of Tabriz, 2017.
6. [6] Amel N., "Study of petrology and petrogenesis of lamprophyre dykes in the north of Tabriz (Manoor)", In Proceedings of the 3th conference of the Geological Society of Iran; Universit of Shiraz, 2000; pp. 401-411.
7. [7] Moayyed M., Ghaderi M., Garechahi Z., Ahmadian J., "Study of Petrography and petrogenesis of Monavvar area Spessartite dykes (East Azarbaijan Province)", Petrology 2023.
8. [8] MCBIRNEY A.R., NOYES R.M., "Crystallization and Layering of the Skaergaard Intrusion", Journal of Petrology 1979, 20, 487-554, doi:10.1093/petrology/20.3.487. [DOI:10.1093/petrology/20.3.487]
9. [9] Shelly D., "Igneous and metamorphic rocks under microscope", Chapman and Hall 1993.
10. [10] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock-forming minerals. Second edition", 1992; ISBN 0582300940.
11. [11] Kharbish S., "Geochemistry and magmatic setting of Wadi El-Markh island-arc gabbro--diorite suite, central Eastern Desert, Egypt", Geochemistry 2010, 70, 257-266. [DOI:10.1016/j.chemer.2009.12.007]
12. [12] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., "Report. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names", Mineralogical magazine 1997, 61, 295-321. [DOI:10.1180/minmag.1997.061.405.13]
13. [13] Coulson I.M., "Evolution of the North Qôroq centre nepheline syenites, South Greenland: alkali-mafic silicates and the role of metasomatism", Mineralogical Magazine 2003, 67, 873-892. [DOI:10.1180/0026461036750149]
14. [14] Droop G.T.R., "A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria", Mineralogical magazine 1987, 51, 431-435. [DOI:10.1180/minmag.1987.051.361.10]
15. [15] Papike J.J., "Amphiboles and pyroxenes: Characterization of other than quadrilateral components estimates of ferric iron from microprobe data", In Proceedings of the Geological Society of America Abstracts with Programs; 1974; Vol. 6, pp. 1053-1054.
16. [16] Le Bas M.J., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 1962, 260, 267-288. [DOI:10.2475/ajs.260.4.267]
17. [17] Grove T.L., Bryan W.B., "Fractionation of pyroxene-phyric MORB at low pressure: an experimental study", Contributions to Mineralogy and Petrology 1983, 84, 293-309. [DOI:10.1007/BF01160283]
18. [18] Morimoto N., Fabrie J., Ferguson A.K., Ginzburg I. V., Ross M., Seifert F.A., Zussman J., "Nomenclature of pyroxenes: Mineralogical Magazine", Mineralogical Magazine 1988. [DOI:10.1180/minmag.1988.052.367.15]
19. [19] France L., Ildefonse B., Koepke J., Bech F., "A new method to estimate the oxidation state of basaltic series from microprobe analyses", Journal of Volcanology and Geothermal Research 2010, 189, 340-346, doi:10.1016/J.JVOLGEORES.2009.11.023. [DOI:10.1016/j.jvolgeores.2009.11.023]
20. [20] Kress V.C., Carmichael I.S.E., "The compressibility of silicate liquids containing Fe 2 O 3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology 1991, 108, 82-92. [DOI:10.1007/BF00307328]
21. [21] Kilinc A., Carmichael I.S.E.E., Rivers M.L.; Sack R.O., "The ferric-ferrous ratio of natural silicate liquids equilibrated in air", Contributions to Mineralogy and Petrology 1983, 83, 136-140, doi:10.1007/BF00373086. [DOI:10.1007/BF00373086]
22. [22] Botcharnikov R.E., Koepke J., Holtz F., McCammon C., Wilke M., "The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt", Geochimica et Cosmochimica Acta 2005, 69, 5071-5085. [DOI:10.1016/j.gca.2005.04.023]
23. [23] Moretti R., "Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts", Annals of Geophysics 2005.
24. [24] Schweitzer E.L., Papike J.J., Bence A.E., "Statistical analysis of clinopyroxenes from deep-sea basalts", American Mineralogist 1979, 64, 501-513.
25. [25] Foster M.D., "Interpretation of the composition of trioctahedral micas", US Geol. Surv. Prof. Pap., B 1960, 354, 1-49. [DOI:10.3133/pp354B]
26. [26] Jiang Y.H., Jiang S.Y., Ling H.F., Zhou X.R., Rui X.J., Yang W.Z., "Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses", Lithos 2002, 63, 165-187, doi:10.1016/S0024-4937(02)00140-8. [DOI:10.1016/S0024-4937(02)00140-8]
27. [27] Nachit H., Ibhi A., Ohoud M. Ben, "others Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Comptes Rendus Geoscience 2005, 337, 1415-1420. [DOI:10.1016/j.crte.2005.09.002]
28. [28] Nisbet E.G., a. Pearce, "J. Clinopyroxene composition in mafic lavas from different tectonic settings", Contributions to Mineralogy and Petrology 1977, 63, 149-160, doi:10.1007/BF00398776. [DOI:10.1007/BF00398776]
29. [29] Leterrier J., Maury R.C., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 1982, 59, 139-154. [DOI:10.1016/0012-821X(82)90122-4]
30. [30] Nimis P., "Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems", Contributions to Mineralogy and Petrology 1999, 135, 62-74, doi:10.1007/s004100050498. [DOI:10.1007/s004100050498]
31. [31] Verhoogen J., "Distribution of titanium between silicates and oxides in igneous rocks", American Journal of Science 1962, 260, 211-220. [DOI:10.2475/ajs.260.3.211]
32. [32] Beccaluva L., Macciotta G., Piccardo G.B., Zeda O., "Clinopyroxene composition of ophiolite basalts as petrogenetic indicator", Chemical Geology 1989, 77, 165-182, doi:10.1016/0009-2541(89)90073-9. [DOI:10.1016/0009-2541(89)90073-9]
33. [33] Coltorti M., Bonadiman C., Faccini B., Grégoire M., O'Reilly S.Y., Powell W., "Amphiboles from suprasubduction and intraplate lithospheric mantle", Lithos 2007, 99, 68-84. [DOI:10.1016/j.lithos.2007.05.009]
34. [34] Vyhnal C.R., McSween H.Y., Speer J.A., "Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability", American Mineralogist 1991, 76, 176-188.
35. [35] Nimis P., Ulmer P., "Clinopyroxene geobarometry of magmatic rocks. Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems", Contributions to Mineralogy and Petrology 1998, 133, 122-135, doi:10.1007/S004100050442. [DOI:10.1007/s004100050442]
36. [36] Nimis P., Ulmer P., "Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems", Contributions to Mineralogy and Petrology 1998, 133, 122-135, doi:10.1007/s004100050442. [DOI:10.1007/s004100050442]
37. [37] Nimis P., Taylor W.R., "Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology 2000, 139, 541-554, doi:10.1007/s004100000156. [DOI:10.1007/s004100000156]
38. [38] Putirka K.D., "geochemistry K.P.-R. in mineralogy and; 2008, undefined Thermometers and Barometers for Volcanic Systems", Reviews in Mineralogy and Geochemistry 2008, 69, 61-120, doi:10.2138/rmg.2008.69.3. [DOI:10.2138/rmg.2008.69.3]
39. [39] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT-estimations", GFF 1997, 119, 55-60. [DOI:10.1080/11035899709546454]
40. [40] Bertrand P., "Mercier J.-C.C. The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system?", Earth and Planetary Science Letters 1985, 76, 109-122, doi:10.1016/0012-821x(85)90152-9. [DOI:10.1016/0012-821X(85)90152-9]
41. [41] Putirka K.D., "Thermometers and Barometers for Volcanic Systems", Reviews in Mineralogy and Geochemistry 2008, 69, 61-120, doi:10.2138/rmg.2008.69.3. [DOI:10.2138/rmg.2008.69.3]
42. [42] Negro A.D., Carbonin S., Molin G.M., Cundari A., Piccirillo E.M., "Intracrystalline Cation Distribution in Natural Clinopyroxenes of Tholeiitic, Transitional, and Alkaline Basaltic Rocks", Advances in Physical Geochemistry 1982, 117-150. [DOI:10.1007/978-1-4612-5683-0_3]
43. [43] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer", Contributions to mineralogy and petrology 1992, 110, 304-310. [DOI:10.1007/BF00310745]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb