Volume 31, Issue 4 (12-2023)                   www.ijcm.ir 2023, 31(4): 757-770 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naseri Esfandagheh A, Rahgoshay M, Bagheri S. Chemistry and thermobarometry of amphibolites of the Faryab complex, southern Iran.. www.ijcm.ir 2023; 31 (4) :757-770
URL: http://ijcm.ir/article-1-1805-en.html
1- Department of Geology, Faculty of Earth Sciences, University of Shahid Beheshti, Tehran, Iran
2- Department of Geology, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
Abstract:   (758 Views)
Metamorphic rocks in the Faryab complex are part of the Bajgan metamorphic complex with Upper Cretaceous age that crops out in the southeast of Sanandaj-Sirjan zone, south Iran. The metamorphic rocks of Faryab Complex have been metamorphosed in greenschist and amphibolite facies include garnet mica schist, epidote schist, epidote amphibole schist, amphibole schist, epidote amphibolite, amphibolite and garnet amphibolite. Minerals composing amphibolites are garnet, amphibole, epidote, plagioclase, quartz, chlorite and sphene as well as titanite and magnetite as secondary minerals. The composition of amphiboles in amphibolite and epidote amphibolite are made of calcic types and their chemistry varies from magnesio-hornblende through ferro-tschermakite-hornblende, ferro paragasite-hornblende, ferro edenite-hornblende to ferroedenite. The composition of plagioclas ranges from albite to oligoclase. The protolith of most amphibolites and epidote amphibolites in the Faryab complex are defined by the occurrence of key minerals in metabasites and are considered as basalt and gabbro. Several thermobarometeric calculation methods indicate that the highest temperature and pressure for the amphibolites, which were appeared adjacent to peridotites and located in the northern part of the complex, are about 700 °C and 9.7 kbar. By moving away from the peridotites into the lower structural units in the southern part of the Faryab complex, the temperature and pressure range in the amphibolite and epidote amphibolite and decrease to 510°C and 4.34 kbar on average, which is beginning of amphibolite and middle amphibolite facies. Investigation of the P-T pathes in conjunction with close associations of isograde lines show that geothermal gradients were high even at the beginning of metamorphism. Mineral chemistry and thermobarometric calculations along with consideration of the structural position of the Faryab complex indicate that the tectonic position of the Faryab complex in the Sanandaj-Sirjan zone may remined us an accretion-subduction complex. This complex was constructed in the north-dipping Neo-Tethyan subduction zone during the Late Cretaceous time, which caused the higher degree metamorphic rocks were thrusted onto the shallower ones.
Full-Text [PDF 2150 kb]   (274 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Korprobst J., "Metamorphic Rocks and their geodynamic Significance", Blasie pascal University, clemont Ferrand, France, 109 p (2002).
2. [2] Miyashiro A., "Metamorphic petrology", UCL Press, London, 404 P (1994).
3. [3] Spear F.S., "Metamorphic phase equilibria and pressure-temperature-time paths", Mineralogical society of America, monograph Series. BookCrafters, Inc., Chelsea, Michigan, U.S.A, 799 P, (1993).
4. [4] McCall G., Kidd R., "The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present", Geological Society, London, Special Publications, v. 10, no. 1, (1982), p. 387-397. doi:10.1144/GSL.SP.1982.010.01.26. [DOI:10.1144/GSL.SP.1982.010.01.26]
5. [5] McCall G. J. H., "A summary of the geology of the Iranian Makran", Geol. Soc. Sp. Pub., 195, (2002), 147-204. [DOI:10.1144/GSL.SP.2002.195.01.10]
6. [6] Hassanzadeh J., Wernicke B.P., "The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions", Tectonics, 35, (2016), doi:10.1002/2015TC003926. [DOI:10.1002/2015TC003926]
7. [7] Dorani M., Arvin M., Oberhänsli R., Omrani H., Dargahi S., "The study of mineral chemistry, detection of metamorphic P-T and fluid activity calculation of calcsilicate in the Bajgan complex, Kerman province", Scientific Quarterly Journal, GEOSCIENCES, Vol. 29, (2020), No.115.
8. [8] Morgan K.H., Bailey P.B.H., Camp J.S., Child R., Crick D.A., Dalai H., Mellett S.W., McCormick S.D., McKenzie A., Motamadi S., Peterson M.S., Pouyaei N., Porter D.J., Power P., Smith J.H., Swain S.R., White J.D., "Geological map of Minab, scale 1: 250000", Geological survy of Iran (1983).
9. [9] Babakhani A. R., Alavi Tehrani "Sabzevaran geological map, scale 1/250000, Iran's, Geological and Mineral Exploration Organization, (1992).
10. [10] Nazemzadeh Shoaei, M., Zamani Pedram, M., Padashi, S.M., "Pagodar geological map", scale 1/100000. geological survey and mineral exploration of Iran.
11. [11] Sabzehei, M., Nazemzadeh Shoaei, M., Eshraghi, S.A., Roshan Ravan, J., 1994. Mohammad Abad map, 1: 100,000. Geological Survey of Iran.
12. [12] Morgan, K.H., McCall, G.J.H., Huber, H., 1979. Geology Map of Kahnuj, Geology Survey of Iran, No. 7545, scale 1: 100,000. [13] Morgan, K.H., Huber, H., McCall, G.J.H., Samimi namin, M., 1980. Geological map of Now-Dez, Scale 1:100000. Geological Survey and Mineral Exploration of Iran.
13. [14] Turner F.J., "Metamorphic petrology" McGraw-Hill, NY, 403 p, (1968).
14. [15] Miyashiro A., "Evolution of metamorphic belts", J Petrol 2:277 311, (1961). [DOI:10.1093/petrology/2.3.277]
15. [16] Brown E.H., "The crossite content of Ca-amphibole as a guide to pressure of metamorphism", J Petrol 18:53 72, (1977). [DOI:10.1093/petrology/18.1.53]
16. [17] Leake B.E., "The relationship between tetrahedral aluminium and the maximum possible octahedral aluminium in natural calciferous and sub calciferous amphiboles", Am Mineral 50:843-851, (1965).
17. [18] Kostyuk E.A., Sobolev V.S., "Paragenetic types of califerous amphiboles of metamorphic rocks", Lithos 2: 6282, (1969). [DOI:10.1016/S0024-4937(69)80006-X]
18. [19] Raase P., "Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism" Contrib Mineral Petrol 45:231516, (1974). [DOI:10.1007/BF00383440]
19. [20] Laird J., Albee A.L., "Pressure, temperature and time indicators in mafic schist: their application to reconstructing the poly metamorphic history of Vermont", Am J Sci 281:127-175, (1981a). [DOI:10.2475/ajs.281.2.127]
20. [21] Holland T.J.B., Richardson S.W., "Amphibole zonation in metabasites as a guide to the evolution of metamorphic conditions", Contrib Mineral Petrol 70:143-148, (1979). [DOI:10.1007/BF00374442]
21. [22] Fleet M.E., Barnett R.L., "A1iv/A1vi partitioning in calciferous amphiboles from the Frood mine", Sudbury, Ontario. Can. Mineral, 16, (1978), 527-532.
22. [23] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Youzhi G., "Nomenclature of amphiboles; Report of the Subcomm. on Amphiboles Intern" Miner. Ass., Commiss. New Minerals and Mineral Names. Am. Mineral., 82: 1019-1037, (1997). [DOI:10.1127/ejm/9/3/0623]
23. [24] Leake B. E., Woolley A. R., Birch W. D., Burke E. A., Ferraris G., Grice J. D., Whittaker E. J., "Nomenclature of amphiboles: additions and revisions to the International Mineralogical Associationʼs amphibole nomenclature", Am Mineral, 89, 883-887, (2004).
24. [25] Deer W.A., Howie R.A., Zussman J., "An introduction to the rock-forming minerals" 2nd Ed., Prentice Hall Ed., Harlow, Essex, England; New York, NY, (1996), 498 pp.
25. [26] Holland T.J.B., Blundy J.D., "Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry Contributions to Mineralogy and Petrology", 116, (1994), 433-447. [DOI:10.1007/BF00310910]
26. [27] Ernst W.G., Liu J., "Experimental phaseequilibrium study of Al and Ti contents of Calcic amphibole in MORB-A semiquantitative thermobarometer", American Mineralogist, 83, (1998), 952-969. [DOI:10.2138/am-1998-9-1004]
27. [28] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer", Contributions to Mineralogy and Petrology, 110, (1992), 304-310. [DOI:10.1007/BF00310745]
28. [29] Hollister L.S., Grissom G.C., Pters E.K., Stowell H.H., Sisson V.B., "Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons", American Mineralogist; v. 72; (1987), p. 231-239.
29. [30] Hammarstrom J.M., Zen E., "Aluminum in hornblende: An empirical igneous geobarometer" American Mineralogist, 71, (1986), 1297-1331.
30. [31] Johnson M.C., Rutherford M.J., "Experimental calibration of an aluminumin-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks", Geology, v. 17, (1989), p. 837- 841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
31. [32] Laird J., Lanphere A., Albee A.L., "Distribution of Ordovician and Devonian metamorphism in mafic and pelitic schists from Vermont", American Journal of Science, 284, (1984), 376-416. [DOI:10.2475/ajs.284.4-5.376]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb