Volume 29, Issue 1 (3-2021)                   www.ijcm.ir 2021, 29(1): 63-80 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emamjomeh, Jahangiri, Moazzen. Geochemistry and geological setting of turquoise hosted intrusive bodies in Damghan (Baghou) turquoise-gold mine, Torud- Chah Shirin volcano-plutonic segment.. www.ijcm.ir 2021; 29 (1) :63-80
URL: http://ijcm.ir/article-1-1586-en.html
1- Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
Abstract:   (1232 Views)
Sub-volcanic diorite and granodiorite intrusive bodies (Middle Eocene) and dome shaped rhyolite have intruded into Lower to Middle Eocene volcanic rocks in Torud-Chah Shirin magmatic segment. The granodiorite plutons and rhyolitic dome host turquoise and gold mineralization in Damghan mine. Intrusive bodies display characteristics of high potassium CA and meta-aluminous (diorite and some of granodiorite samples) to per-aluminous (rhyolite and some of granodiorite samples). Comparison of TiO2-La-Hf and Zr-Nb-Ce / P2O5 values, as well as Rb to Y + Nb ratios indicate that magmatism is related to post-collisional tensional regime after closure of Neotethys. On the other hand, the metasomatism of  mantle due to the fluids release from subducted oceanic slab has caused  high ratio of LILE / HFSE with negative anomalies of Ti, Nb and Ta in magma. Partial melting of the metasomatized mantle has led to the formation of primary magma, which eventually has generated diorite, granodiorite, and rhyolite magmas by fractional crystallization, crustal assimilation and magma mixing
Full-Text [PDF 5491 kb]   (517 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Heidari SM., Mossavi Makooi SA., Mirzakhanian M., Rasoli F., Ghaderi M., Abadi AR., A review of tectono-magmatic evolution and gold metallogeny in the inner parts of Zagros orogeny:a tectonic model for the major gold deposits,W Iran, Eurasian Mining,1(2006) 3-20.
2. [2] Hushmandzadeh A., Alavi-Naini M., Haghipour A., Geological evolution of Torud area with 1:250000 scale map of Torud, Tehran, (1978), Geological Survey of Iran (in Persian).
3. [3] Aghanabati A., Geology of Iran, Geological survey of Iran, (2004), ISBN: 9646178138 (in Persian).
4. [4] Eshraghi S.A., Jalali. A, Geological map of Moalleman, 1:100,000 ,Geological (2006), Survey of Iran.
5. [5] Liaghat S., Sheykhi V., Najjaran M., Petrology, gheochemistry and genesis of Baghu turquoise, Damghan, Journal of Science, University of Tehran, (2008)133-142, (in Persian).
6. [6] Najjaran M., Geochemistry and genesis of Baghu turquoise deposit (Damghan), M.Sc. Thesis, Shiraz University, Shiraz, Iran, (2000)150 pp, (in Persian).
7. [7] Rashid Nejad Omran N., Petrography and magmatic changes study and Relationship with Au mineralization in Baghu area, (S-SE of Damghan), M.Sc. Thesis, Tarbiat Moallem Unuversity, Tehran, Iran, (1993) 256 pp, (in Persian).
8. [8] Ghorbani Gh., Petrology of magmatic rocks from south of Damghan, Unpublished Ph.D thesis in geology/petrology, Faculty of earth science, Shahid Beheshti University, (2005) 356 p
9. [9] Ghorbani G., Chemical composition of minerals and genesis of mafic microgranular enclaves in intermediate - acidic plutonic rocks from Kuh -e- Zar area (southeast of Semnan), Iranian Journal of Crystallography and Mineralogy 15-2 (2007) 293-310, (in Persian).
10. [10] Ghorbani G., Vossoghi Abedini M., Ghasemi H., Geothermobarometry of granitoids from Torud-Chah shirin area (south Damghan), Iranian Journal of Crystallography and Mineralogy 13-1 (2005) 95-106, (in Persian).
11. [11] Rouhbakhsh P., Karimpour M.H., Malekzadeh Shafaroudi A., Mineralization and fluid inclusion studies in the northern part of the Kuh Zar Au-Cu deposit, Damghan (Firuzeh-Gheychi area), Iranian Journal of Crystallography and Mineralogy 26-3 (2018) 611-624, (in Persian). [DOI:10.29252/ijcm.26.3.611]
12. [12]Niroomand S., Hassanzadeh J., Tajeddin H.A., Asadi S., Hydrothermal evolution and isotope studies of the Baghu intrusion-related gold deposit, Semnan province, north central Iran, Ore Geology Reviews, 95, (2018) 1028-1048. [DOI:10.1016/j.oregeorev.2018.01.015]
13. [13] Khademi M., Structural characteristics and tectonic setting of Toroud area, south of Damghan, Unpublished Ph.D thesis in Tectonic, Shahid Beheshti University, Tehran, (2007) 209 pp.
14. [14] Moradi S., Hassannejad A.K., Ghorbani G., Investigation of mineralogy and geothermometry of quartz and tourmaline veins at the Baghu area, southeast of Damghan, Iranian Journal of Crystallography and Mineralogy 24-4 (2017) 661-674, (in Persian).
15. [15] Taghipour B., Tourmaline-turquoise paragenesis in the phyllic alteration zone, copper-gold deposit, Kuh-Zar, South of Semnan, Iranian Journal of Crystallography and Mineralogy. 23-1(2015) 3-14.
16. [16] Whitney D.L., Evans B.W., Abbreviations for names of rock-forming minerals, American Mineralogist, 95, (2010) 185-187. [DOI:10.2138/am.2010.3371]
17. [17] Harker A., The natural history of igneous rocks. Methuen and Co. London (1909).
18. [18] De La Roche H., Leterrier J., Grandclaude P., Marchal M., A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses - Its relationships with current nomenclature, Chemical Geology, 29 (1980)183-210. [DOI:10.1016/0009-2541(80)90020-0]
19. [19] Gillespie M.R., Styles M.T., BGS rock classification scheme, V:1, Classification of Igneous rocks, British Geological Survey Research Report, 2nd edition, RR 9606.
20. [20] Peccerillo A., Taylor S. R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petrol. 58 (1976) 63-81. [DOI:10.1007/BF00384745]
21. [21] Irvine T.N., Baragar W.R.A. A guide chemical classification of the common volcanic rock, Canada J. Earth Sci. 8 (1971) 523-548 [DOI:10.1139/e71-055]
22. [22] Shand Eruptive Rocks. John Wiley & Sons, (1943).
23. [23] Nakamura N., Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites, Geochimica et Cosmochimica Acta 38, no. 5 (1974) 757-775. [DOI:10.1016/0016-7037(74)90149-5]
24. [24] Sun S.S., McDonough W.F., Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Geological Society of London, No. 42- 1 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
25. [25] Taylor S.R., McLennan S.M., The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks, Oxford, Blackwell Scientific, (1985) 312 p.
26. [26] Müller D., Rock NMS., Groves D.I., Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study, Mineralogy and Petrology, 46 (1992)259-289. [DOI:10.1007/BF01173568]
27. [27] Pearce J.A., Source and setting of granites rocks. Episodia, 19-4, (1996) 120-125. [DOI:10.18814/epiiugs/1996/v19i4/005]
28. [28] Schmidt M.W., Dardonb A., Chazotb G., Vannuccic R., The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes, Earth and Planetary Science Letters 226 (2004) 415 - 432. [DOI:10.1016/j.epsl.2004.08.010]
29. [29] Walker J.A., Patino L.C., Carr M.J., Feigenson M.D., Slab control over HFSE depletions in central Nicaragua, Earth and Planetary Science Letters, 192 (2001)533-543. [DOI:10.1016/S0012-821X(01)00476-9]
30. [30] Wilson M., Igneous petrogenetic, Chapman & Hall, (1989) 466p. [DOI:10.1007/978-1-4020-6788-4]
31. [31] Perugini D., Poli G., The mixing of magmas in plutonic and volcanic environments: Analogies and differences, Lithos, (2012), DOI: 10.1016/j.lithos.2012.02.002. [DOI:10.1016/j.lithos.2012.02.002]
32. [32] Nesbitt H.W., Markovics G., Price R.C., Chemical processes affecting alkalis and alkaline earths during continental weathering, Geochim. Cosmochim. Acta 44 (1980) 1659-1666. [DOI:10.1016/0016-7037(80)90218-5]
33. [33] Rolinson H.R., Using geochemical data: Evaluation, presentation, interpretation, Longman Scientific and Technical, London (1993).
34. [34] Barbarin B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos 46 (1999) 605-626. [DOI:10.1016/S0024-4937(98)00085-1]
35. [35] Castro A., Moreno-Ventas I, de la Rosa J.D., H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature, Earth Science Review, 31(1991) 237-253. [DOI:10.1016/0012-8252(91)90020-G]
36. [36] Castro A., PatinÄ o Douce A.E., Guillermo Corretge Â.L., de la Rosa J.D., Mohammed El-Biad M., El-Hmidi h., Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis, Contrib Mineral Petrol , 135(1999) 255-276. [DOI:10.1007/s004100050511]
37. [37] Sverrisdottir G., Hybrid magma generation preceding Plinian silicic eruptions at Hekla,Iceland: Evidence from mineralogy and chemistry of two zoned deposits, Geological. Magazine. 144-4 (2007) 643-659. [DOI:10.1017/S0016756807003470]
38. [38] Li J.Y., Niu Y.L., Hu Y., Chen S., Zhang Y., Duan M., Sun P., Origin of the late Early Cretaceous granodiorite and associated dioritic dikes in the Hongqilafu pluton, northwestern Tibetan Plateau:a case for crust-mantle interaction. Lithos, 260 (2016) 300-314. [DOI:10.1016/j.lithos.2016.05.028]
39. [39] Roberts M. P., Clemens J. D., Origin of high-potassium, calcalkaline, I-type granitoids. Geology 21 (1993) 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
40. [40] Zhang X., Zhang H., Jiang G.N., Zhai ZhangY., Early Devonian alkaline intrusive complex from the northern North China craton: a petrological monitor of post-collisional tectonics, Journal of the Geological Society, London, 167 (2010) 717-730. [DOI:10.1144/0016-76492009-110]
41. [41] De Paolo D., Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291 (1981) 193-196. [DOI:10.1038/291193a0]
42. [42] Baxter S., Feely M., Magma mixing and mingling textures in granitoid: examples from the Galway granite, Connemara, Ireland, Mineralogy and Petrology, 76 (2002) 63-77. [DOI:10.1007/s007100200032]
43. [43] Woods A.W., Cowan A., Magma mixing triggered during volcanic eruptions, Earth and Planetary Science Letters 288 (2009) 132-137 , doi:10.1016/j.epsl.2009.09.015. [DOI:10.1016/j.epsl.2009.09.015]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb