Volume 27, Issue 4 (12-2019)                   www.ijcm.ir 2019, 27(4): 909-924 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pirooj H, Tahmasbi Z, Ahmadi Khalaji A. Mineralogy, geochemistry and radiometric dating of igneous rocks of Champeh salt dome, north Bandar-Lengeh. www.ijcm.ir 2019; 27 (4) :909-924
URL: http://ijcm.ir/article-1-1372-en.html
1- Lorestan University
Abstract:   (2688 Views)
Champeh salt dome is located in the north of Bandar Lengeh (Hormozgan Province). This dome has penetrated into the Champeh anticline with sequences from the formations in as ending order of Pabdeh, Jahrom, Asmari, Gachsaran, Mishan and Aghajari. The compositions of volcanic rocks inside this dome are different ranging from rhyolite to basalt and are accompanied by granodiorite rocks. The study of mineral chemistry in granodiorite rocks shows that the amphiboles are located in the calicic group and subgroup of ferrohornblende. The plagioclase of these rocks is albite and alkali feldspar is an orthoclase. Barometric measurement, based on the amount of Al in Amphiboles, shows the amphibole crystallization pressure as 1.54 kbar. Thermometry, shows based on the coexistence of hornblende and plagioclase minerals in granodiorite rocks, the crystallization temperature ranging between 684 °C to 811 °C. The amount of calculated oxygen fugacity for these amphiboles is about -17.08, which shows the conditions of the oxidant environment at crystallization. Based on the whole rock geochemistry, the composition of igneous rocks changes from mafic to acidic, corresponding to that the nature of their magma as calc-alkaline. In the normalized multi-elemental of chondrite and primary mantle diagrams, in most samples LREE enrichment is observed in comparison to HREE and depletion of Ti, P, Ta and Nb, which is characteristic of volcanic arc of the subduction region and in different tectonic diagrams, they represent the active continental margin environment. The result of U-Pb zircon dating of granodiorite is 549.2±4.8 Ma (Late Neoprotrozoic time).
Full-Text [PDF 112 kb]   (921 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Bosák P., Jaros J., Spudil J., Sulovsky P., Václavek V., "Salt Plugs in the Eastern Zagros, Iran: results of Regional Geological Reconnaissance-geolines", Institute of Geology, Academy of Sciences of the Czech Republic 7(1998) 1-174.
2. [2] Alsharhan A. S., Nairn A. E. M., "Sedimentary Basins and Petroleum Geology of the Middle East", Elsevier, Amsterdam (1997) 1-843.
3. [3] Sánchez-García T., Bellido F., Pereira M.F., Chichorro M., Quesada C., Pin C.H., Silva J.B., "Rift related volcanism predating the birth of the Rheic Ocean (Ossa-Morena Zone, SW Iberia)", Gondwana Research 17 (2010) 392-407. [DOI:10.1016/j.gr.2009.10.005]
4. [4] Edgell H. S., "Salt tectonism in the Persian Gulf basin", Geological Society London, Special Publications 100 (1996) 129-151. [DOI:10.1144/GSL.SP.1996.100.01.10]
5. [5] Ala M. A., "Salt diapirism in southern Iran", AAPG Bulletin 58 (1974) 1758-1770. [DOI:10.1306/83D919A2-16C7-11D7-8645000102C1865D]
6. [6] Oil Service Company of Iran, "Bandar-E Lengeh geological compilation map 1:100000", Sheet No. 20880E (2009).
7. [7] Vyhnal C. R., McSween H. Y. and Speer J. A., "Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability", American Mineralogist 76(1991) 167-188.
8. [8] Cosca M. A., Essene E. J., Bowman J. R., "Complete chemical analyses of metamorphic hornblendes: implications for normalizations, calculated H2O activities, and thermobarometry", Contributions to Mineralogy and Petrology 108(1991) 472-484. [DOI:10.1007/BF00303451]
9. [9] Leake B. E., Woolley A. R., Arps C. E., Birch W. D., Gilbert M. C., Grice J. D., Linthout K., "Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names", Mineralogical Magazine 61 (1997) 295-321.
10. [10] Coltorti M., Bondaiman C., Faccini B., Grégoire M., O'Reilly S.Y., Powell W., "Amphiboles from suprasubduction and intraplate lithospheric mantle", Lithos 99 (2007) 68-84. [DOI:10.1016/j.lithos.2007.05.009]
11. [11] Hammarstrom J.M., Zen E-an., "Aluminum in hornblende: An empirical igneous geobarometer", American Mineralogist 71(1986) 1297-1313.
12. [12] Hollister L. S., Grissom G. C., Peters E. K., Stowell H. H., Sisson V. B., "Confirmation of the empirical calibration of Al in hornblende with pressure of solidification of calc-alkaline plutons", American Mineralogist 72(1987) 231-239.
13. [13] Schmidt M. W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al in hornblende barometer", Contributions to Mineralogy and Petrology 110 (1992) 304-310. [DOI:10.1007/BF00310745]
14. [14] Johnson M. C., Rutherford M. J., "Experimental calibration of the aluminum-in-hornblende geobarometer with application to long Valley caldera (California) volcanic rocks", Geology 17 (1989) 837-841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
15. [15] Mutch E. J. F., Blundy J. D., Tattitch B. C., Cooper F. J., Brooker R. A. "An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer", Contributions to Mineralogy and Petrology 171(2016) 85. [DOI:10.1007/s00410-016-1298-9]
16. [16] Humphreys M., Christopher T., Hards V., "Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufriere Hills volcano, Montserrat", Contributions to Mineralogy and Petrology 157(2009) 609-624. [DOI:10.1007/s00410-008-0356-3]
17. [17] Helmy H. M., Ahmed A. F., El Mahallawi M. M., Ali S. M., "Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications", Journal of African Earth Sciences 38(2004) 255-268. [DOI:10.1016/j.jafrearsci.2004.01.002]
18. [18] Ewart A., "A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks", In Developments in Petrology 6(1979) 13-121. [DOI:10.1016/B978-0-444-41765-7.50007-1]
19. [19] Scaillet B., Evans B. W., "The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-f O2-f H2O conditions of the dacite magma", Journal of Petrology 40(1999) 381-411. [DOI:10.1093/petroj/40.3.381]
20. [20] Wones D. R., "Significance of the assemblage titanite+magnetite +quartz in granitic rocks", American Mineralogist 74(1989) 744-749.
21. [21] Pearce J. A., "A user's guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration", Geological association of canada, Short Course Notes 12(1996) 113.
22. [22] Pearce J. A., Cann J. R., "Tectonic setting of basic volcanic rocks determined using trace element analyses", Earth and planetary science letters 19(1973) 290-300. [DOI:10.1016/0012-821X(73)90129-5]
23. [23] Cox K. G., Bell J. D., Pankhurst R. J. "The Interpretation of Igneous Rocks", George Allen and Unwin. 1979. [DOI:10.1007/978-94-017-3373-1]
24. [24] Pearce J.A., "Trace element characteristics of lavas from destructive plate boundaries, Orogenic Andesites and Related Rocks", John Wiley and Sons, Chichester (1982) 525-548.
25. [25] Sun S. S., McDonough W. S., "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes", Geological Society London 42(1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
26. [26] Srivastava R. K., Singh R. K., "Trace element geochemistry and genesis of Precambrian sub alkaline mafic dykes from the central Indian craton: evidence for mantle metasomatism", Journal of Asian Earth sciences 23(2004): 373-389. [DOI:10.1016/S1367-9120(03)00150-0]
27. [27] Clague D. A., Frey F. A., "Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: Implications for the oceanic mantle below Hawaii", Journal of Petrology 23(1982): 447-504. [DOI:10.1093/petrology/23.3.447]
28. [28] Lentz D. R., "Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulphide systems: the role of extensional geodynamics", Ore Geology Reviews 12(1998) 289-327. [DOI:10.1016/S0169-1368(98)00005-5]
29. [29] Wass S. Y., Roger N. W., "Mantle metamorphism- Precursor to alkaline continental volcanism", Geochimica ET Cosmochimica Acta 44(1980) 1811-1823. [DOI:10.1016/0016-7037(80)90230-6]
30. [30] Cullers R. L., Graf J. L., "Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks", In Developments in geochemistry 2(1984) 237-274 [DOI:10.1016/B978-0-444-42148-7.50012-5]
31. [31] Hammer J.E., Coombs M.L., Shamberger P.J., Kimura J.I., "Submarin silver in North Kona: A window in to the early magmatic and growth history Hualalai Volcan, Hawaii", Jurnal of Volcanology and Geothermal Research 151(2006) 157-188. [DOI:10.1016/j.jvolgeores.2005.07.028]
32. [32] Wilson M., "Igneous petrogenesis: a global tectonic approach", Unwin Hymen, London (1989) 466. [DOI:10.1007/978-1-4020-6788-4]
33. [33] Machado A., Lima E. F., Chemale F., Morata D., Oteiza O., Almeida D. P., Urrutia J. L., "Geochemistry constraints of Mesozoic-Cenozoic calc-alkaline magmatism in the South Shetland arc, Antarctica", Journal of South American Earth Sciences 18(2005) 407-425. [DOI:10.1016/j.jsames.2004.11.011]
34. [34] Jung S., Hoffer E., Hoernes S., "Neo-Proterozoic rift-related syenites (North Damara Belt, Namibia) Geochemical and Nd-Sr-Pb-O isotope constraints for mantle sources and petrogenesis", Lithos 96(2007) 415-435. [DOI:10.1016/j.lithos.2006.11.005]
35. [35] Zhao Z. F., Zheng Y. F., Wei C. S., Wu Y. B., "Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust", Lithos 93(2007) 248-272. [DOI:10.1016/j.lithos.2006.03.067]
36. [36] Romick J.D., Kay S.M., Kay R.M., "The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tehpra from the central Aleutians, Alaska", Contributions to Mineralogy and Petrology 112(1992) 101-118. [DOI:10.1007/BF00310958]
37. [37] Hoskin P.W.O., Kinny P.D., Wyborn D., Chappell B. W., "Identitifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach", Journal of Petrology 41(2000) 1365-1395. [DOI:10.1093/petrology/41.9.1365]
38. [38] Dickin A.P., "Radiogenic Isotope Geology", Cambridge University Press, UK, (2005) 509 pp. [DOI:10.1017/CBO9781139165150]
39. [39] Wood D. A., "The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province", Earth and planetary science letters 50(1980) 11-30. [DOI:10.1016/0012-821X(80)90116-8]
40. [40] Pearce J. A., "Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust", Lithos 100(2008) 14-48. [DOI:10.1016/j.lithos.2007.06.016]
41. [41] Berberian M., King G.C.P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 210-265. [DOI:10.1139/e81-019]
42. [42] Samani B. A., Zhuyi C., Xuetao G., Chuan T., "Geology of Precambrianin Central Iran: on the context of stratigraphy, magmatism and metamorphism", Geosciences Quaternary 3(1988) 40-63.
43. [43] Nadimi A,"Evolution of the Central Iranian basement", Gondwana Research 12 (2007) 324-333. [DOI:10.1016/j.gr.2006.10.012]
44. [44] Ramezani J., Tucker R. D., "The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics", American Journal of Science 303(2003) 622-665. [DOI:10.2475/ajs.303.7.622]
45. [45] Yasaghi A., Nasrabady M., Mohajjel M., "Mineralogy, petrogenesis and tectonic setting interpretation of Kuh-e-Sarhangi area granites (northwest of Lut block), (in Persian)", Petrology 6(2015) 179-199.
46. [46] Faramarzi N. S., Amini S., Schmitt A. K., Hassanzadeh J., Borg G., McKeegan K., Mortazavi S. M., "Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new record of Cadomian arc magmatism in the Hormuz Formation", Lithos 236(2015) 203-211. [DOI:10.1016/j.lithos.2015.08.017]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb