Volume 27, Issue 3 (10-2019)                   www.ijcm.ir 2019, 27(3): 683-694 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khodami M, Bakhtiari B. Crystal size and shape distribution of plagioclase in the basaltic andesites, North of Gavkhouni. www.ijcm.ir 2019; 27 (3) :683-694
URL: http://ijcm.ir/article-1-1335-en.html
1- Yazd University
2- Shahrekord University
Abstract:   (2614 Views)
Plagioclase is the most abundant mineral in basaltic andesites in the north Gavkhouni. Olivine and pyroxene are the other rock forming mineral there. In their 3-dimensional shapes, they are unequal and varies between bladed to prolate. Plagioclase sometimes exhibit dusty texture, oscillatory zoning and sinusoid growth. Based on crystal size distribution data, the rate of crystal nucleation of plagioclase varies between 2.77*10-8-3.07*10-8 mm-3s-1 in 71.78 - 17.77 years. The results indicate the higher nucleation rate, rapid cooling and a short crystal residence time in the magma chamber. The crystal size distribution diagrams show the high frequency of smaller crystals and the coarsening of the average crystals. However, the presence of two populations of plagioclase indicates the interfering of new magma with the same chemical composition and new crystal population into the magma chamber. This event can increase the volume of the magma chamber pressure and eruption of the magma.
Full-Text [PDF 110 kb]   (857 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Amini S., Eskandari A., "Investigation of physical processes of crystallization in igneous rocks from SE Birjand using 3-D shape modeling of plagioclase crystals (in Persian)", Iranian Journal of Crystallography and Mineralogy 18 (2011) 669-684.
2. [2] Ahmadi A., Firouzkouhi Z.F., Moridi Farimani A.A., Lentre D.R., "Geochemical and textural characteristics of plagioclase as evidence for open-system processes: Case study from Bazman volcano SE Iran (in Persian)", Iranian Journal of Crystallography and Mineralogy 25 (2017) 367-380.
3. [3] Modjarrad M., Shaykhbaglou S., "Crystal Size Distribution of amphibole and plagioclase from zanbil adakitic dacites, Urmia- Iran: evidence for magma mixing and textural coarsening", Acta Geodynamica et Geomaterhalia 13 (2016)181, 89-101. [DOI:10.13168/AGG.2015.0040]
4. [4] Pourkhorsandi H., Mirnejad H., Raiesi D., Hassanzadeh J., "Crystal size and shape distribution systematics of plagioclase and the determination of crystal residence times in the micromonzogabbros of Qisir Dagh, SE of Sabalan volcano (NW Iran)", Geologica Carpathica 66 (2015) 4, 257-268 [DOI:10.1515/geoca-2015-0024]
5. [5] Nabavi H., Amidi M., "The Geological map of Naein 1:100000", (1972) Geological Survey of Iran.
6. [6] Noghreyan M., Khodami M., "Magmatic evolution recorded by phenocrysts in volcanic rocks southeast of Isfahan" , Journal of Tethys 2 (2014) 55-69.
7. [7] Higgins M.D., "Magma dynamics beneath Kameni Volcano, Thera, Greece, as revealed by crystal size and shape measurements", Journal of Volcanology and Geothermal Research 70(1996) 37-48. [DOI:10.1016/0377-0273(95)00045-3]
8. [8] Shea T., Hammer J. E., "Kinetics of cooling- and decompression-induced crystallization inhydrous mafic-intermediate magmas", Journal of Volcanology and Geothermal Research 260 (2013) 127-145. [DOI:10.1016/j.jvolgeores.2013.04.018]
9. [9] Putirka K A, "Igneous thermometers and barometers based on plagioclase plus liquid equilibria: Tests of some existing models and new calibrations", American Mineralogist 90 (2005) 336-346 [DOI:10.2138/am.2005.1449]
10. [10] Blundy J., Cashman K., Humphreys M., "Magma heating by decompression-driven crystallization beneath andesite volcanoes", Nature 443 (7107) 76-80. [DOI:10.1038/nature05100]
11. [11] Shcherbakov V. D., Plechov P. Y., Izbekov P. E., Shipman J. S., "Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka", Contributions to Mineralogy and Petrology 162 (2011) 83-99. [DOI:10.1007/s00410-010-0584-1]
12. [12] Streck M. J., "Mineral textures and zoning as evidence for open system processes", Reviews in Mineralogy & Geochemistry 69(2008) 595-622. [DOI:10.2138/rmg.2008.69.15]
13. [13] Higgins M.D., "Determination of crystal morphology and size from bulk measurements on thin sections: numerical modeling", American Mineralogist 79 (1994) 113-119.
14. [14] Morgan D.J., Jerram D.A., "On estimating crystal shape for crystal size distribution analysis", Journal of Volcanology and Geothermal Research 154 (2006) 1-7. [DOI:10.1016/j.jvolgeores.2005.09.016]
15. [15] Mock A., Jerram D.A., "Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite", Journal of Petrology 46 (2005) 1525- 1541. [DOI:10.1093/petrology/egi024]
16. [16] Marsh B.D., "Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. theory", Contributions to Mineralogy and Petrology 99(1988) 277-291. [DOI:10.1007/BF00375362]
17. [17] Cashman K.V., "Relationship between plagioclase crystallization and cooling rate" Contributions to Mineralogy and Petrology 113(1993) 126 -142. [DOI:10.1007/BF00320836]
18. [18] Brugger C.R., Hammer J. E., "Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma", Earth and Planetary Science Letters 300 (2010) 246-254. [DOI:10.1016/j.epsl.2010.09.046]
19. [19] Higgins M.D., "Textural coarsening in igneous rocks, International", Geology Review 53 (2011) 354-376. [DOI:10.1080/00206814.2010.496177]
20. [20] Higgins M.D., "Measurement of crystal size distributions", American Mineralogist, 85 (2000) 1105-1116. [DOI:10.2138/am-2000-8-901]
21. [21] Higgins M.D., Roberge J., "Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Monteserrat: evidence for dynamic crystallization/textural coarsening cycles", Journal of Petrology 44 (2003) 1401-1411. [DOI:10.1093/petrology/44.8.1401]
22. [22] Higgins M. D., "Quantitative textural measurement in igneous and metamorphic petrology", Cambridge University, (2006) USA. [DOI:10.1017/CBO9780511535574]
23. [23] Ni H., Keppler H., Walte N., Schiavi F., Chen Y., Masotta M., Li Z., "In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks", Contribiotion to Mineralogy and Petroligy (2014) doi.167. 10.1007/s00410-014-1003-9. [DOI:10.1007/s00410-014-1003-9]
24. [24] Higgins M.D., Roberge J., "Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Monteserrat: evidence for dynamic crystallization/textural coarsening cycles", Journal of Petrology 44(2003) 1401-1411. [DOI:10.1093/petrology/44.8.1401]
25. [25] Schiavi F., Walte N., Keppler H., "First in situ observation of crystallization processes in a basaltic-andesitic melt with the moissanite cell", Geology 37(2009) 963-966 [DOI:10.1130/G30087A.1]
26. [26] Higgins M.D., "Origin of megacrysts in granitoids by textural coarsening: A Crystal Size Distri-bution (CSD) Study of Microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California", in Fernandez, C., and Castro, A., Eds, Understanding granites: Integrating Modern and classical techniques. Special Publication 158: London, Geological Society of London (1999) 207-219. [DOI:10.1144/GSL.SP.1999.168.01.14]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb