Volume 27, Issue 1 (4-2019)                   www.ijcm.ir 2019, 27(1): 19-30 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S M, Davoudian Dehkordi A, Shabanian Borojeni N, Azizi H. Mineralogy, geochemistry and petrogenesis of protolith of amphibolites from the North east of Yan-Cheshmeh, South east of Zayandeh-rud lake. www.ijcm.ir. 2019; 27 (1) :19-30
URL: http://ijcm.ir/article-1-1222-en.html
Abstract:   (140 Views)
Amphibolite rocks with mylonitic texture exposed in the NE of Yan- Cheshmeh village (SE of Zayandeh-Rud Lake). Mineralogy of rocks include amphibole, plagioclase, quartz, rutile, clinozoesite, chlorite, titanite, biotite and opaque. Amphiboles are seen as fish. Basic igneous rocks are protolith of the amphibolites that have subalkaline nature. Ni (299-370 ppm), Cr (1169-1900 ppm) and SiO2 (44.91-49.20 %Wt) contents highly resemble to unfractionation magmas. Chondrite normalized REE patterns exhibit pronounced LREE enrichment relative to HREE without Eu anomaly. Low TiO2, Zr, P2O5 and Nb/Y contents with enrichment of LREE and negative Nb anomaly are pronounced characters of continental flood tholeiitic basalt within plate magmatism. Tholeiitic affinities, low values of alkali elements, high MgO, FeO, Cr and Ni contents suggest high partial melting in an extensional setting of continental within-plate with rapid decrease in pressure, resulting in high rate of partial melting and quick uplift which are effective factors for the formation of basaltic protolith of the amphibolites.   
Full-Text [PDF 130 kb]   (73 Downloads)    
Type of Study: Research | Subject: Special
Received: 2019/03/16 | Accepted: 2019/03/16 | Published: 2019/03/16

1. [1] Ntaflos T., Richter W., ″Geochemical constraints on the origin of the continental flood basalt magmatism in Franz Josef Land, Arctic Russia″, European Journal of Mineralogy 15 (2003) 649-663. [DOI:10.1127/0935-1221/2003/0015-0649]
2. [2] Reichow M.K., Saunders A., White R., Al'Mukhamedov A., Medvedev A.Y., ″Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia″, Lithos 79 (2005) 425-452. [DOI:10.1016/j.lithos.2004.09.011]
3. [3] Richards M.A., Duncan R.A., Courtillot V.E., ″Flood basalts and hot-spot tracks: plume heads and tails″, Science 246 (1989)103-107. [DOI:10.1126/science.246.4926.103]
4. [4] White R., McKenzie D., ″Magmatism at rift zones: the generation of volcanic continental margins and flood basalts″, Journal of Geophysical Research: Solid Earth 94 (1989) 7685-7729. [DOI:10.1029/JB094iB06p07685]
5. [5] Campbell I.H., Griffiths R.W., ″ Implications of mantle plume structure for the evolution of flood basalts″, Earth and Planetary Science Letters 99 (1990) 79-93. [DOI:10.1016/0012-821X(90)90072-6]
6. [6] Anderson D.L., ″The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs″, Earth and Planetary Science Letters 123 (1994) 269-280. [DOI:10.1016/0012-821X(94)90273-9]
7. [7] King S.D., Anderson D.L., ″Edge-driven convection″, Earth and Planetary Science Letters 160 (1998) 289-296. [DOI:10.1016/S0012-821X(98)00089-2]
8. [8] Peate D.W., Hawkesworth C.J., Mantovani M.S., ″Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution″, Bulletin of Volcanology 55 (1992) 119-139. [DOI:10.1007/BF00301125]
9. [9] Xu Y., Chung S.-L., Jahn B.M., Wu, G., ″Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China″, Lithos 58 (2001) 145-168. [DOI:10.1016/S0024-4937(01)00055-X]
10. [10] Song S., Su L., Li X.H., Zhang G., Niu Y., Zhang L., ″Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China″, Precambrian Research 183 (2010) 805-816. [DOI:10.1016/j.precamres.2010.09.008]
11. [11] Davoudian A.R., Genser J., Neubauer F., Shabanian N., ″40 Ar/39 Ar mineral ages of eclogites from North Shahrekord in the Sanandaj–Sirjan Zone, Iran: Implications for the tectonic evolution of Zagros orogen″, Gondwana Research 37 (2016) 216-240. [DOI:10.1016/j.gr.2016.05.013]
12. [12] Davoudian A., Genser J., Dachs E., Shabanian N., ″Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran″, Mineralogy and Petrology 92 (2008) 393-413. [DOI:10.1007/s00710-007-0204-6]
13. [13] Malek-Mahmoudi F., Davoudian A.R., Shabanian N., Azizi H., Asahara Y., Neubauer F., Dong Y., ″Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: Geodynamic implications for the Pan-African basement in Iran″, Precambrian Research 293 (2017) 56-72. [DOI:10.1016/j.precamres.2017.03.003]
14. [14] Ten Grotenhuis S., Trouw R., Passchier C., ″Evolution of mica fish in mylonitic rocks″, Tectonophysics 372 (2003) 1-21. [DOI:10.1016/S0040-1951(03)00231-2]
15. [15] Kocak K., ″The petrology and geochemistry of the Ortakoy area, Central Turkey″, Ph.D. Thesis, Glasgow Univ (1993) 280 p.
16. [16] Kocak K., ″Mineralogical and petrographical characteristics of the Ortakoy amphibolites and tremolite-bearing gneisses (in Turkish)″, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8 (2002) 239-245.
17. [17] Leake B.E., ″The chemical distinction between ortho-and para-amphibolites″, Journal of Petrology 5 (1964) 238-254. [DOI:10.1093/petrology/5.2.238]
18. [18] Rollinson H., ″Using geochemical data: evaluation, presentation, and interpretation″, Longman Ltd/, Essex, England (1996) 352 p.
19. [19] Taylor S.R. and McLennan, S/M/, ″The continental crust: its composition and evolution″, Blackwell Oxford, England (1985).
20. [20] Coonrad W.L., Elliott R., ″The United States Geological Survey in Alaska: Accomplishments During 1981″, US Geological Survey (1984)
21. [21] Le BAS M.J., Maitre R.L., Streckeisen A., Zanettin B., ″A chemical classification of volcanic rocks based on the total alkali-silica diagram″, Journal of petrology 27 (1986) 745-750. [DOI:10.1093/petrology/27.3.745]
22. [22] Peccerillo A., Taylor S.R., ″Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey″, Contributions to mineralogy and petrology 58 (1976) 63-81. [DOI:10.1007/BF00384745]
23. [23] Boynton W.V., ″Cosmochemistry of the rare earth elements: meteorite studies, Rare earth element geochemistry″, Elsevier (1983).
24. [24] Choi S.H., Choe W.H., Lee J.I., ″Mantle heterogeneity beneath the Antarctic–Phoenix ridge off [25] Antarctic Peninsula″, Island Arc 17 (2008) 172-182.
25. [26] Temizel I., Arslan M., ″Mineral chemistry and petrochemistry of post-collisional Tertiary mafic to felsic cogenetic volcanics in the Ulubey (Ordu) area, eastern Pontides, NE Turkey″, Turkish Journal of Earth Sciences 18 (2009) 29-53.
26. [27] Thirlwall M., Smith T., Graham A., Theodorou N., Hollings P., Davidson J., Arculus R., ″High field strength element anomalies in arc lavas: source or process? ″, Journal of Petrology 35(1994) 819-838. [DOI:10.1093/petrology/35.3.819]
27. [28] Thompson R., ″Dispatches from the basalt front″, I. Experiments, Proceedings of the Geologists' Association 95(1984) 249-262.
28. [29] Sun S. S., McDonough W.F., ″Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes″, Geological Society, London, Special Publications 42 (1989)313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
29. [30] Pearce J. A., ″Role of sub-continental lithosphere in magma genesis at active continental margins″, In: Hawkesworth C.J., Nurry M.L., (Eds.) Continental Basalts and Mantle Xenoliths, Shiva, Nantwich (1983) 230-249.
30. [31] Hofmann A., Jochum K., ″Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project″, Journal of Geophysical Research: Solid Earth 101(1996) 11831-11839. [DOI:10.1029/95JB03701]
31. [32] Norman M.D., Garcia M.O., ″Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites″, Earth and Planetary Science Letters 168 (1999) 27-44. [DOI:10.1016/S0012-821X(99)00043-6]
32. [33] Manikyamba C., Ganguly S., Santosh M., Saha A., Lakshminarayana G., ″Geochemistry and petrogenesis of Rajahmundry trap basalts of Krishna-Godavari Basin, India″, Geoscience Frontiers 6 (2015) 437-451. [DOI:10.1016/j.gsf.2014.05.003]
33. [34] Boillot G., Coulon C. ″La déchirure continentale et l'ouverture océanique, Géologie des marges passives″, Gordon and Breach Sci. Publ., Paris (1998) 208 p.
34. [35] Pik R., Deniel C., Coulon C., Yirgu G., Hofmann C., Ayalew D., ″The northwestern Ethiopian Plateau flood basalts: classification and spatial distribution of magma types″, Journal of Volcanology and Geothermal Research 81(1998) 91-111. [DOI:10.1016/S0377-0273(97)00073-5]
35. [36] Beccaluva L., Bianchini G., Natali C., Siena F., ″Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau″, Journal of Petrology 50 (2009) 1377-1403. [DOI:10.1093/petrology/egp024]
36. [37]McLennan S.M., ″Relationships between the trace element composition of sedimentary rocks and upper continental crust″, Geochemistry, Geophysics, Geosystems 2 (2001). [DOI:10.1029/2000GC000109]
37. [38] Rudnick R.L., Fountain D.M., ″Nature and composition of the continental crust: a lower crustal perspective″, Reviews of geophysics 33 (1995) 267-309. [DOI:10.1029/95RG01302]
38. [39] Hofmann A.W., ″Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust″, Earth and Planetary Science Letters 90 (1988) 297-314. [DOI:10.1016/0012-821X(88)90132-X]
39. [40] Safonova I.Y., ″Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma″, Ore Geology Reviews 35 (2009) 137-154. [DOI:10.1016/j.oregeorev.2008.09.002]
40. [41] Xu M., Li C., Xu W., Xie C., Hu P., Wang M., ″Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, central Tibet: Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean″, Journal of Earth Science 25 (2014) 224-240. [DOI:10.1007/s12583-014-0419-5]
41. [42] Niu Y., ″Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts″, Chinese Science Bulletin 54 (2009) 4148-4160. [DOI:10.1007/s11434-009-0668-3]
42. [43] Shervais J. W., "Ti-V plots and the petrogenesis of modern and ophiolitic lavas", Earth and planetary science letters 59.1 (1982) 101-118. [DOI:10.1016/0012-821X(82)90120-0]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb