Volume 26, Issue 4 (1-2019)                   www.ijcm.ir 2019, 26(4): 975-988 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi S, Tahmasbi Z, Ahmadi Khalaji A, Zal F. Mineral chemistry of tourmaline in Lale Zar granite mass (kerman province) . www.ijcm.ir. 2019; 26 (4) :975-988
URL: http://ijcm.ir/article-1-1204-en.html
Lorestan University
Abstract:   (628 Views)
Lale zar granite batolith is located in the southeast of Urumieh-Dokhtar magmatic belt and Dehech-Sarduieh. This mass includes a low density of tourmaline with nodule,vein and solar morphologies. Less tourmaline occurs in this mass could be due to mass being saturated in the boron. The studied tourmalines are classified in the shourl-dravite series and alkaline group. Most of the substitutions in these tourmalines are kinds: Ca + Mg(O) = Na + Mg(OH),
Ca = X–vac + Na، Ca + Mg = (X-vac + Al) – 1 and Mg instead of Fe. Existence of clear zoonings in the tourmalines, large amounts of Mg and less than 0.6 amounts of FeO / FeO + MgO, show the growth of tourmaline in the open systems where generated from magmatic-hydrothermal and hydrothermal. On the other hand, high amounts of REE elements and enrichment of LREE than HREE, enrichment of  the transition elements such as Cr, V, Ni, Cu, Zn, Zr also can be show the hydrothermal origin for these tourmalines.
Full-Text [PDF 123 kb]   (196 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/12/29 | Accepted: 2018/12/29 | Published: 2018/12/29

1. [1] Hawthorne F.c., Henry D.J., "Classification of the minerals of the tourmaline group", European Journal of Mineralogy, 11 (1999), 201-215. [DOI:10.1127/ejm/11/2/0201]
2. [2] Foit F.F., Rosenberg P.E., "Coupled substitutions in the tourmaline group ", Contributions to Mineralogy and Petrology 62 (1977) 109-117. [DOI:10.1007/BF00372871]
3. [3] Abu El-Enen, M. M. and Okruch, M., "The texture and composition of tourmaline in metasediments of the Egypt, Implication for the tectono-metamorphic evolution of the Pan-African basement", Mineralogy Magazine 71(1) (2007)17-40. [DOI:10.1180/minmag.2007.071.1.17]
4. [4] Buria’nek D., Nova’k M., "Morphological and compositional evolution of tourmaline from nodular granite at Lavic;ky near Velke´ Mezir;?´c;?´, Moldanubicum, Czech Republic ", Journal of the Czech Geological Society 49 (2004) 81–90.
5. [5] Zal F., "Geochemistry and source determination of tourmaline in Mashhad granites (g2)", M. SC thesis, Faculty of Science, Lorestan University, (2014) 110 p.
6. [6] Tahmasbi Z., Ahmadi Khalaji A., Rajaeieh M., "Tourmalinization in the Astaneh granitoids (south west Arak)", Iranian Journal of Crystallography and Mineralogy 17 (3)(2009) 369-380.
7. [7] Mansouri Esfahani M., Khalili M., "Mineralogy and mineral – chemistry of tourmaline and garnet from Molataleb village granitoid (North of Aligudarz) NW of Isfahan", Iranian Journal of Crystallography and Mineralogy 22 (1)(2014) 139-148.
8. [8] Sepahi A.A., Salami S., Tabrizi M., "Geochemistry of tourmalines in aplitic and pegmatitic dikes from Alvand plutonic and metamorphic rocks of the Hamedan area", Iranian Journal of Crystallography and Mineralogy 22 (3)(2014) 495-506.
9. [9] Ahmadi Khalaji A., Tahmasbi Z., Zal F., Shabani Z., "The behavior of major and trace elements of the tourmaline from the Mangavai and Ganjnameh pegmatitic rocks (Hamadan area)", Petrology 7(27) (2016) 1-24.
10. [10] Ahmadi bonakdar A., Ahmadi A., "Tourmaline composition of Chah rouii pegmatites, southwest of Nehbandan", Iranian Journal of Crystallography and Mineralogy 21 (3)(2013) 495-560.
11. [11] Mirsepahvanad F., Tahmasbi T., Shahrokhi1 S. V., Ahmadi khalaji A., Khalili M., "Geochemistry and source determination of tourmalines in Boroujerd area", Iranian Journal of Crystallography and Mineralogy 20 (2)(2012) 281-292.
12. [12] Esmaeili D., Valizadeh M.V., Kananian A., "The mineral chemistry of tourmaline in the quartz-tourmaline veins of Shah-Kuh granite (Eastern Iran)", Journal of science (University of Tehran) 5(2) (2005) 155-175.
13. [13] Gholami A.A., Mohammadi S.S., Zarrinkoub M. H., "Petrography, mineral chemistry of tourmaline, geochemistry and tectonic setting of Tertiary igneous rocks in Shurab area(west of Khusf), Southern Khorasan", Iranian Journal of Crystallography and Mineralogy 24 (1)(2016) 189-204.
14. [14] Khalili Kh., Mackizadeh M.A. "The occurrence of tourmaline in Kuh Zar (Baghoo) Au-Cu mine, south of Semnan province", Petrology 3(9) (2012) 57-70.
15. [15] Berberian M., King G. C., "Towards a paleogeography and tectonic evolution", of Iran Canadian Journal of Earth Science 18 (1981) 210-265. [DOI:10.1139/e81-019]
16. [16] Ghorbani M., " Magmatism - Metamorphism of Iran", Aryan Zamin, Tehran, (2014) 479p.
17. [17] Alavi M., "Tectonic Of the Zagros organic belt of Iran. New Data and interpretations", Tectonophysics, 229(1994) 211-238. [DOI:10.1016/0040-1951(94)90030-2]
18. [18] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz", Journal of Asian Earth Sciences 24 (4) (2005) 405-417. [DOI:10.1016/j.jseaes.2003.11.007]
19. [19] Dimitrijevic Md., "Geology of Kerman regionG.S. A."Rep. Yu/52 (1973) 334.
20. [20] Pourmirza Langroudi S., "The Study of petrography, geochemistry and petrology of igneous rocks in the Laleh Zar -Baft Area", M. SC thesis, Faculty of Science, Kharazmi University, (2000) 170 p.
21. [21] Mahmoudi Sh., Masoudi F., "Estimation of the degree of metamorphism and P-T path of calk silicate rocks (Skarn) in the metamorphic halo of the Lalehzar intrusion in the northeast of Baft (Kerman), 9th Symposium of Geological Society of Iran, Kharazmi University, Tehran.
22. [22] Sadeghi Z., Mehdizadeh H., Sadeghian M., "Petrology of Shah Kouh granitoid mass, (Northeast Baft)", 9th Symposium of Geological Society of Iran, Kharazmi University, Tehran.
23. [23] Dimitrijevic M.D., "Th geological map, 1: 100000 scale, Baft quadrangle", the Geological Survey of Iran 11831 (1973).
24. [24] Slack J.F., Palmer M.R., Stevens B.P.J., Barnes R.G., "Origin and significance of tourmaline-rich rocks in the Broken Hill district", Australia. Econ. Geol. 88 (1993) 505– 541. [DOI:10.2113/gsecongeo.88.3.505]
25. [25] Collins A., "Mineralogy and geochemistry of Tourmalinein contrasting Hydrothermal system", Copiapo area, Northern Chile.
26. [26] London D., Manning D., "Chemical variation and significance of tourmaline from Southwest England", Economic Geology, 90 (1995), 495-519. [DOI:10.2113/gsecongeo.90.3.495]
27. [27] Manning D.A.C., "Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Thailand", Mineralogical Magazine 45 139- 147. [DOI:10.1180/minmag.1982.045.337.16]
28. [28] Pesquera A., Velasco F., "Mineralogy geochemistry and geological significance of tourmaline-rich rocks from the Paleozoic Cinco Villas massif", (western Pyrenees, Spain) Contributions to Mineralogy and Petrology 129 (1997) 53-74. [DOI:10.1007/s004100050323]
29. [29] Pirajno F., Smithies R. H., "The FeO/ (FeO + MgO) ratio of tourmaline: A useful indicator of spatial variations in granite – related hydrothermal mineral deposits", Journal of Geochemical Exploration, 42 (1992) 371-381. [DOI:10.1016/0375-6742(92)90033-5]
30. [30] Boyonton Boynton W.V., "Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed), Rare Earth Element Geochemistry", Elsevier, Amsterdam, (1984) pp. 63–114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
31. [31] Sun S., McDonough W. F., "Chemical and isotopic systematic of oceanic basalts: implication for Mantel composition and processes. In: Saunders A. D., and Norry M. J., (eds) :Magmatism in ocea basins", Geological Society: London - Special Publications 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
32. [32] Ertl A, Hughe s JM., "The crystal structure of an aluminium-rich schorl overgrown by boron-rich olenite from Koralpe", Styria, Austria. Mineral Petrol (2002).
33. [33] Hughe s JM, Ertl A, Dyar MD, Grew ES, Wieden-Beck M, Brandstätter F., "Structural and chemical response to varying [4]B content in zoned Fe-bearing olenite from Koralpe", Austria. Amer Miner 89: 447–454.
34. [34] Niktabar S. M., Moradian A., Ahmadipour H., "The study of mineralogy and geochemistry of Lalezar Granitoid (Bardsir-Kerman)", Iranian Journal of Crystallography and Mineralogy 23 (4)(2016) 803-818.
35. [35] Samson I.M., Sinclair W.D., "Magmatic hydrothermal Buids and the origin of quartztourmaline orbicules in the Seagull Batholith Yukon Territory", Canadian Mineralogist 30 (1992) 937–954.
36. [36] Cavarretta G., Puxeddu M., "Schorl-Dravite-Ferridravite Tourmalines Deposited by Hydrothermal Magmatic Fluids during Early Evolution of the Larderclio Geothermal Field Italy", Economic Geology 85: 1236-1251. [DOI:10.2113/gsecongeo.85.6.1236]
37. [37] Tahmasbi Z., Zal F., Ahmadi Khalaji A., "Morphology of Tourmaline in the Mashhad granites (g2) with using fractal analysis and Diffusion-Limited Aggregation", Iranian Journal of Crystallography and Mineralogy 23 (3)(2015) 417-428.
38. [38] King RW., Kerrich RW., Daddar R., "REE distributions in tourmaline: an INAA technique involving pretreatment by B volatilization", Amer Miner 73: 424–431(1988) pages 424-431
39. [39] Kerrich R., Fryer B. J., "Archean precious metal hydrotherrnal systemsD, ome mine, Abitibi greenstonbee lt II REE and oxygeni sotope., relationsC anadianJ ournalo f Earth Sciences1, 6, 440-458.
40. [40] Renata Čopjaková, Radek Škoda, Michaela Vašinová Galiová, Milan Novák., "Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Třebíč Pluton, Moldanubian Zone, Czech Republic", Journal of Geosciences, 58 (2013), 113–131 [DOI:10.3190/jgeosci.138]
41. [41] Plimer I.R., Lu J., Kleeman J.D., "Trace and rare earth elements in cassiterite—sources of components for the tin deposits of the Mole Granite", Australia. Miner. Depos. 26, (1991). [DOI:10.1007/BF00191072]
42. [42] Slack J. F., "Tourmaline associations with hydrothermal ore deposits", Reviews in Mineralogy, 33(1996) 559-643.
43. [43] Jiang S-Y, Yu J-Mm Lu J-J "Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic–hydrothermal fluid evolution and ore genesis", Chem Geol 209(2004) 193– 213 [DOI:10.1016/j.chemgeo.2004.04.021]
44. [44] Wood SA., "The aqueous geochemistry of the rare-earth elements and yttrium. 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters", Chem Geol 82 (1990) 159–186 [DOI:10.1016/0009-2541(90)90080-Q]
45. [45] Slack J.F., Meier A.L., Malcolm M.J., Fey D.L., Doughten M.W., Wanless G.A., "Trace element and rare-earth element geochemistry of bedded and massive sulfides from the Sullivan Pb– Zn–Ag deposit, British Columbia—a reconnaissance study. In:Lydon, J.W., Hoy, T., Slack, J.F., Knapp, M.E. (Eds.), The Geological Environment of the Sullivan Pb–Zn –Ag Deposit, British Columbia. Spec. Publ.-Geol. Assoc", Can. Miner.Depos. Div., vol. 1, (2000) pp. 720– 735.
46. [46] Sverjensky D.A., "Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 67 (1984) 70–78. [DOI:10.1016/0012-821X(84)90039-6]
47. [47] Bau M., "Rare-earth element mobility during hydrothermal and metamorphic fluid – rock interaction and the significance of the oxidation state of europium", Chem. Geol. 93 (1991) 219– 230. [DOI:10.1016/0009-2541(91)90115-8]
48. [48] Michael A. W., Horst R. M., Philipp S., Anna G., Thomas W., Dorrit E. J., Matthias B., Gregor M., "Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): The importance of major element composition, sector zoning, and fluid or melt composition" Chemical Geology 344 (2013) 73-90. [DOI:10.1016/j.chemgeo.2013.02.025]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb