Volume 26, Issue 4 (1-2019)                   www.ijcm.ir 2019, 26(4): 813-823 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alaminia Z, Fattahi S, Askari A. Mineralogy and geochemistry of the Bozjani copper deposit, west of Fariman, NE Iran. www.ijcm.ir. 2019; 26 (4) :813-823
URL: http://ijcm.ir/article-1-1190-en.html
University of Isfahan
Abstract:   (323 Views)
The Bozjani copper deposit is located about 30 km west of Fariman city, Khorasan Razavi Province. Host rocks to mineralization are mostly pridotites and basalts of Fariman ophiolitic sequence. Ore body consists of two parts: lower and upper. Lower part has formed a stringer of primary sulfides as stockwork, veinlets, and disseminated. Uppermost part has lenticular shaped dominated by ribbon-like, fine grain and rounded primary sulfides. Mineralogical investigations show pyrite, marcasite, chalcopyrite, bornite, sphalerite, galena, native copper, and magnetite are primary minerals of ore body associated with secondary minerals as coprite, tenorite, covellite, chalcocite, chrysocolla, malachite, azurite, jarosite, limonite, and hematite. According to geochemistry of immobile elements, the host mafic rocks fall in boninite tectonic setting. Mass balance calculations show enrichments of Cu, Pb, Th, As, Ag, Tl and U during evolution of Bozjani copper deposit. The results of host rock, structure, texture, mineralogy and geochemistry in this research reveal that Bozjani deposit resemble volcanic massive sulfide deposit dominated by mafic rocks. Evolution of this deposit is related to four stages including hydrothermaly alteration, seafloor weathering, regional metamorphic and weathering of terrestrial.
Full-Text [PDF 128 kb]   (106 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/12/26 | Accepted: 2018/12/26 | Published: 2018/12/26

1. [1] Noghreyan M. K., " Evolution geochimique, mineralogique, et structurale d'un edifice ophiolitique singulier: Le massif de Sabzevar (Partie Central), NE d'Iran", These Sci, Univ. de Nancy I, France (1982) 239p.
2. [2] Khalatbari Jafari M., Babaie H. A., Gani M., "Geochemical evidence for Late Cretaceous marginal arc-to-backarc transition in the Sabzevar ophiolitic extrusive sequence, northeast Iran", Journal of Asian Earth Sciences 70–71 (2013) 209–230. [DOI:10.1016/j.jseaes.2013.03.015]
3. [3] Lensch G., Mihm A., Alavi-Tehrani N., " The postophiolitic volcanism north of Sabzevar/Iran: geology, petrography and major element geochemistry", Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, Stuttgart (1980) 686–702.
4. [4] Cann J., McCaig A., Yardley B., "Rapid generation of reaction permeability in the roots of black smoker systems, Troodos ophiolite, Cyprus", Geofluids 15, (2015) 179-192. [DOI:10.1111/gfl.12117]
5. [5] Patten C.G.C., Pitcairn I. K., Teagle D.A.H., "Hydrothermal mobilisation of Au and other metals in supra-subduction oceanic crust: insights from the Troodos ophiolite", Ore Geology Reviews (2017). doi:http://dx.doi.org/10.1016/j.oregeorev.2017.02.019. [DOI:10.1016/j.oregeorev.2017.02.019]
6. [6] Yang K., Scott S. D., "Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific", Economic Geology 97, (2002) 1079-1100. [DOI:10.2113/gsecongeo.97.5.1079]
7. [7] Rastad E., Monazami Miralipour A., Momenzadeh M., "Shekh-Ali Copper deposit, a Cyprus- type VMS deposite in SouthEast Iran", Journal of sciences, Islamic Republic of Iran 13(1) (2002) 51-63.
8. [8] Aftabi A., Ghorbani Z., Maclean W.H., "Metamorphic texture and geochemistry of Cyprus- type massive sulfide lenses at Zurabad, Khoy, Iran", Journal of Asian Earth Sciences 27 (2006) 523- 533. [DOI:10.1016/j.jseaes.2005.06.001]
9. [9] Vaezipour M. J., Soheili M., "Geological map of Fariman scale 1:100000", Geological Survey of Iran, Tehran, Iran, (2008).
10. [10] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
11. [11] Wang C. Y., Zhou M. F., Qi L., Hou S., Gao H., Zhang Z., and Malpas J., "The Zhaotongnative copper deposit associated with the Permian Emeishan flood basalts, Yunnan, southwestChina", International Geology Review 48 (2006) 742–753. [DOI:10.2747/0020-6814.48.8.742]
12. [12] Frantzon H., Zierenberg R., and Schiffman P., "Chemical transport in geothermal systems in Iceland evidence from hydrothermal alteration", Journal of Volcanology and Geothermal Research 173 (2008) 217–229. [DOI:10.1016/j.jvolgeores.2008.01.027]
13. [13] Hannington, M.D., "The formation of atacamite during weathering of sulfdes on the modern seafloor", The Canadian Mineralogist 31 (1993) 945–956.
14. [14] Williams P. A., "Oxide Zone Geochemistry", Ellis Harwood, New York (1990) 286 pp.
15. [15] Gillis K. M., Robinson P. T., "Patterns and processes of alteration in the lavas and dykes of the Troodos Ophiolite, Cyprus", Journal of Geophysical Research: Solid Earth 95 (1990) 21523-21548. [DOI:10.1029/JB095iB13p21523]
16. [16] Jenner F., Arculus R., Mavrogenes J., Dyriw N., Nebel O., Hauri E., "Chalcophile element systematics in volcanic glasses from the north western Lau Basin", Geochemistry, Geophysics, Geosystems 13 (2012).
17. [17] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes In:Saunders A.D., and Norry M.J. eds. Magmatism in the ocean basins", Geological Society of London Special Publication 42 (1989) pp 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
18. [18] Munch P., Duplay J., Cocheme J. J., "Alteration of silicic vitric tuffs interbedded in volcanoclastic deposites of the Southern Basin and Range Province, Mexico: Evidences for hydrothermal reaction", Clays and Clay Minerals 44 (1996) 49-67. [DOI:10.1346/CCMN.1996.0440105]
19. [19] Vogt K., Kostner H.M., "Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten", Clay Minerals 13 (1978) 25-43. [DOI:10.1180/claymin.1978.013.1.03]
20. [20] Zeilinski R. A., "The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome formation, Colorado, U.S.A", Chemical Geology 35 (1982) 185-204. [DOI:10.1016/0009-2541(82)90001-8]
21. [21] Laviano, R., Mongelli, G., "Geochemistry and mineralogy as indicators of parental affinity for Cenozoic bentonites: A case study from S. Croce Di Magliano (southern Appennines, Italy)", Clay Minerals 31 (1996) 391-401. [DOI:10.1180/claymin.1996.031.3.09]
22. [22] Costa M.L., Araujo E.S., "Application of multi-element geochemistry in Au-phosphate-bearing lateritic crusts for identification of their parent rocks", Journal of Geochemical Exploration 57, (1996) 257- 272pp.
23. [23] Jowitt S. M., Jenkin G. R. T., Coogan L. A., Naden J., "Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: Effects of protolith composition and alteration mineralogy", Journal of Geochemical Exploration 118 (2012) 47-59. [DOI:10.1016/j.gexplo.2012.04.005]
24. [24] Pearce J. A., "Supra-subduction zone ophiolites: the search for modern analogues", Special Papers-Geological Society of America, (2003) 269-294.
25. [25] Franklin J. M., "Volcanic-associated massive sulphide base metals, in Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., eds.", Geology of Canadian Mineral Deposit Types: Geological Survey of Canada, Geology of Canada, no. 8 (1996) 158-183.

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb