Volume 26, Issue 3 (10-2018)                   www.ijcm.ir 2018, 26(3): 789-796 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahanbakhshi Zadeh N, Borhani Zarandi M, Nateghi M. The Effect of Phase of Alumina on Crystallinity of Perovskite Layer in Perovskite Solar Cells. www.ijcm.ir. 2018; 26 (3) :789-796
URL: http://ijcm.ir/article-1-1159-en.html
Yazd University
Abstract:   (82 Views)
Organic-inorganic perovskite (CH3NH3PbI3), due to an appropriate energy gap to absorb sunlight, is used as an absorbent layer in third generation solar cells. Crystallinity of light absorbing layer plays an important role in the performance of perovskite solar cells and substrate plays an important role on crystallinity of light absorbing layer. In superstructure solar cells, alumina (aluminum oxide) is used as the substrate of light absorbing layer. In this paper, alpha and gamma aluminum oxide are used as the substrate of perovskite layer. The effect of this work on the crystallinity of perovskite layer and parameters that affect the performance of solar cells have been investigated. It was found that by taking into account all the parameters that affect the performance of solar cells, alpha phase aluminum oxide to the gamma phase is more suitable for use in perovskite solar cells that fabricated by two step deposition.
Full-Text [PDF 115 kb]   (34 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/09/25 | Accepted: 2018/09/25 | Published: 2018/09/25

References
1. [1] Qiong W., Hongjun C., Gang L., Lianzhou W., "Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective", Science Bulletin 60 (2015) 405-418. [DOI:10.1007/s11434-015-0734-y]
2. [2] Tze B. S., Qi C., Huanping Z., Chengyang J., Hsin H. W., Yang M. Y., Yongsheng L., Jingbi Y., Yang Y., "Perovskite solar cells: film formation and properties", J. Mater. Chem. A 3 (2015) 9032-9050. [DOI:10.1039/C4TA05246C]
3. [3] Elham H. A., Ahmad K., Ludmilla S., Konrad D., Taisuke M., Wolfgang T., Michael S., Antonio A., Michael G., Anders H., Juan-Pablo C. B., "Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide", Energy Environ. Sci 9 (2016) 3128-3134. [DOI:10.1039/C6EE02390H]
4. [4] Peng Y., Zhike L., Qidong T., Shenghua L., Feng Y., "Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes", Adv. Mater. 27 (2015) 3632–3638. [DOI:10.1002/adma.201501145]
5. [5] Chuantian Z., Henk J. B., Hongwei H., Jinsong H., David C., Liming D., "Advances in Perovskite Solar Cells", Adv. Sci. 3 (2016) 1500324. [DOI:10.1002/advs.201500324]
6. [6] Dian W., Matthew W., Naveen K. E., Ashraf U., "Stability of perovskite solar cells", Solar Energy Materials & Solar Cells 147 (2016) 255-275. [DOI:10.1016/j.solmat.2015.12.025]
7. [7] Guangda N., Xudong G., Liduo W., "Review of Recent Progress in Chemical Stability of Perovskite Solar Cells", J. Mater. Chem. A 3 (2015) 8970-8980. [DOI:10.1039/C4TA04994B]
8. [8] Jingbi Y., Lei M., Tze B. S., Tzung F. G., Yang Y., Wei H. C., Ziruo H., Huajun Ch., Huanping Zh., Qi Ch., Yongsheng L., Nicholas D. M., Yang Y., "Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers", Nature Nanotechnology 11 (2016) 75–81. [DOI:10.1038/nnano.2015.230]
9. [9] Michael M. L., Joël T., Tsutomu M., Takurou N. M., Henry J. S., "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", science 338 (2012) 643-647. [DOI:10.1126/science.1228604]
10. [10] Louise S., Aleksander J., Mattias E., Danielle M. L., Dong K. S., Javier G. G., Ulrich H., "Structural analysis of highly porous γ-Al2O3", Journal of Solid State Chemistry 217 (2014) 1-8. [DOI:10.1016/j.jssc.2014.05.004]
11. [11] Ponja S. D., Parkin I. P., Carmalt C. J., "Synthesis and material characterization of amorphous and crystalline (α-) Al2O3 via aerosol assisted chemical vapour deposition", RSC Adv. 6 (2016) 102956-102960. [DOI:10.1039/C6RA24018F]
12. [12] Fangyuan J., Yaoguang R., Huawei L., Tiefeng L., Lin M., Wei M., Fei Q., Youyu J., Bangwu L., Sixing X., Jinhui T., Yun L., Zaifang L., Hongwei H., Yinhua Zh., "Synergistic Effect of PbI2 Passivation and Chlorine Inclusion Yielding High Open-Circuit Voltage Exceeding 1.15 V in Both Mesoscopic and Inverted Planar CH3NH3PbI3(Cl)-Based Perovskite Solar Cells", Adv. Funct. Mater. 26 (2016) 8119–8127. [DOI:10.1002/adfm.201603968]
13. [13] Xiaojie W., Ping L., Li M., Qian Zh., Yongsheng Ch., Jingxiao L., Shi Y., "Two-dimensional modeling of TiO2 nanowire based organic–inorganic hybrid perovskite solar cells", Solar Energy Materials & Solar Cells 152(2016)111–117. [DOI:10.1016/j.solmat.2016.03.017]

Add your comments about this article : Your username or Email:
CAPTCHA code

© 2018 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb