Volume 26, Issue 3 (10-2018)                   www.ijcm.ir 2018, 26(3): 555-566 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzaei Rayeni R, Ahmadi A, Mirnejad H, boomeri M. Study of the geochemical characteristics of metapelites in the Gol-Gohar area within the Gol-Gohar iron deposit district, SW Sirjan. www.ijcm.ir. 2018; 26 (3) :555-566
URL: http://ijcm.ir/article-1-1140-en.html
1- University of Sistan  Baluchestan
2- University of Tehran
Abstract:   (2316 Views)
The Gol-Gohar metamorphic complex is located about 55 km southwest of the Sirjan and is part of east Sanandaj-Sirjan zone. The rocks units are metamorphosed in greenschist and upper amphibolite facies with age of Middle Jurassic which consists of metapelitic (mica-schists and gneisses), metabasitic and metacarbonatic rocks. Geochemical studies indicate that the precursor sediments of the metapelites had been deposited as immature shales and grywackes from source materials of dominantly felsic to intermediate composition. Source area exhibited weak to moderate chemical weathering. The relatively low contents of Cr (average 99.67 ppm) and Ni (average 56 ppm) in the studied schists are comparable with the concentration of these elements in post-Archean schists. Study of gneisses in the Gol-Gohar area indicates that these rocks are sedimentary in composition (para gneiss) and were derived from rocks with weakly peraluminous.
Full-Text [PDF 119 kb]   (945 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Yaghoobi A., "Investigation of geochemistry and genesis of number 3 anomaly Gol-Gohar deposit", Msc thesis, Shiraz Unieversity, (1999) (130p) (In persian).
2. [2] Poorkhak F., "Paragenesis, Petrogenesis and Petrochemicals of Gol-Gohar Iron Ore (Anomaly No. 30)", Msc thesis, Shahid Bahonar Unieversity, (2003) (296p) (In persian).
3. [3] Babaki A., Aftabi A.J., "Investigation on the model of Iron mineralization at Gol-Gohar Iron deposit, Sirjan-Kerman", Iranian of Geology Science, 16 (61) (2006) 40-59 (in Persian).
4. [4] Bayati rad Y., "Investigation origin of Gol-Gohar iron deposit", Msc thesis, Tehran Unieversity, (2009) (In persian).
5. [5] Asghari g., "Investigation of genesis and formation conditions of Gol-Gohar iron ore deposit and host rocks", Msc thesis, Tehran Unieversity, (2009) (In persian).
6. [6] Torabian S., "Mineralization and genesis of number 3 anomaly in Gol-Gohar mine, based on the trace elements", Msc thesis, Tarbiat Moalem Unieversity, Tehran (2006) (130p) (In persian).
7. [7] Dalfardi M., "Investigation of sulfur origin in minerals of sulfide mines 1, 2 and 3 of Gol-Gohar Iron Ore", Msc thesis, Damghan Unieversity, (2011) (134p).
8. [8] Ghalamghash J., Mirnejad H., "Report of dating Gol-Gohar metamorphic complex", Tehran padir consulting engineer company, 40p (2008).
9. [9] Sabzehei M., "Geological map of Iran, 1:00000 series, Gol-gohar quadrangle", Geological Survey, Iran, (1994).
10. [10] Kretz R., "Symbols for rock-forming minerals", American Mineralogists, 68 (1983) 277-279.
11. [11] Herron M.M., "Geochemical classification of terrigenous sands and shales from core of log data", Journal of Sedimentary Petrology 58 (5) (1988) 820–829.
12. [12] Roser B.P., Korsch R.J., "Discrimination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio", Journal of Geology 94 (1986) 635–650. [DOI:10.1086/629071]
13. [13] Taylor S.R., McLennan S.M., "The Continental Crust: Its Composition and Evolution", Blackwell Oxford, (1988), (1985; Mir, Moscow).
14. [14] Condie K.C.,"Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales", Chemical Geology 104 (1993) 1–37. [DOI:10.1016/0009-2541(93)90140-E]
15. [15] Bolhar R., Kamber B.S., Moorbath S., Whitehouse M.J., Collerson K.D., "Chemical characterization of earth's most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland", Geochimica et Cosmochimica Acta 69 (6) (2005) 1555–1573. [DOI:10.1016/j.gca.2004.09.023]
16. [16] Bhatia M.R., Crook K.A.W., "Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins", Contribution Mineralogy and Petrology 92, (1986) 181–193. [DOI:10.1007/BF00375292]
17. [17] Nesbitt H.W., MacRae N.D., Kronberg B.I., "Amazon deepsea fan muds: light REE enriched products of extreme chemical weathering", Earth and Planetary Science Letter 100(1990)118–123. [DOI:10.1016/0012-821X(90)90180-6]
18. [18] White MW (2005) Geochemistry. John Hopkins University Press, 701p.
19. [19] Nesbitt H.W., Markovics G., Price R.C., "Chemical processes affecting alkalies and alkaline earths during continental weathering", Geochimica et Cosmochimica Acta 44(1980) 1659–1666. [DOI:10.1016/0016-7037(80)90218-5]
20. [20] Grandstaff D.F., Edlman M.J., Foster R.W., Zbinden E., Kimberly M.M., "Chemistry and mineralogy of Precambrian paleosols at the base of the Dominion and Pongola Groups, (Transvaal, South Africa)", Precambrian Research 32(1986) 97–132. [DOI:10.1016/0301-9268(86)90003-3]
21. [21] Harnois L., "The CIW index: a new chemical index of weathering", Sedimentary Geology 55, 319–322 (1988). [DOI:10.1016/0037-0738(88)90137-6]
22. [22] Nesbitt H.W., Young G.M., "Early Proterozoic climates and plate motions inferred from major element chemistry of lutites", Nature 299(1982) 715–717. [DOI:10.1038/299715a0]
23. [23] Taylor S.R., McLennan S.H., "The Continental Crust: Its Composition and Evolution", Blackwell, Oxford, (1985) 312 pp.
24. [24] Cox R., Lowe D.R., Cullers R.L., "The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States", Geochimica et Cosmochimica Acta 59 (1995) 2919–2940. [DOI:10.1016/0016-7037(95)00185-9]
25. [25] van de Kamp P.C., Leake B.E., "Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin", Transactions of the Royal Society of Edinburgh: Earth Sciences 76(1985) 411–449. [DOI:10.1017/S0263593300010646]
26. [26] Weaver C.E., "Clays, Muds, and Shales" Elsevier, Amsterdam (1989) 819 pp.
27. [27] Girty G.H., Ridge D.L., Knaack C., Johnson D., Al-Riyami R.K., "Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California", Journal of Sedimentary Research 66(1996) 107–118.
28. [28] McLennan S.M., Hemming S., "Samarium/Neodymium elemental and isotopic systematics in sedimentary rocks", Geochimica et Cosmochimica Acta 56(1992) 887–898. [DOI:10.1016/0016-7037(92)90034-G]
29. [29] Fedo C.M., Nesbitt H.W., Young G.M., "Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleowearhering conditions and provenance", Geology 23(1995) 921–924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 [DOI:10.1130/0091-7613(1995)0232.3.CO;2]
30. [30] McLennan S.M., "Relationships between the trace element composition of sedimentary rocks and upper continental crust", Geochemistry, Geophysics, Geosystems, 2, 2000GC000109 (electronic publication), (2001).
31. [31] Varga A.R., Szakmلny G., "Geochemistry and provenance of the upper carboniferous sandstones from borehole diَsviszlَ-3 (Téseny Sandstone Formation, SW hungary)", Acta Mineralogica–Petrographica, Szeged (45/2) (2004) 7–14.
32. [32] Pearce J.A., Harris B.W., Ttindle A.G., "Trace element of iseriminant diagrams for the tectonic interpretation of granitic rocks", Journal Petrology, 25(1984) 956–983. [DOI:10.1093/petrology/25.4.956]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb