Volume 26, Issue 2 (7-2018)                   www.ijcm.ir 2018, 26(2): 399-408 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dacitic dome in the Southern Sanandaj-Sirjan Zone- An example of chloritization in biotite minerals. www.ijcm.ir. 2018; 26 (2) :399-408
URL: http://ijcm.ir/article-1-1106-en.html
Abstract:   (350 Views)
The dacitic domes lie in the Sanandaj-Sirjan Zone. They were subjected to deformation resulting from tectonic movements. They are as oriented rocks which show deformation textures such as plagioclase with mechanical twin, biotite fish, and deformed clinopyroxene set in foliated groundmass. Under condition of hydrothermal alteration, biotites altered into chlorite with smectite interlayers and probably leucoxene and titanite intergrowths. The deformation has created micro-fractures and micro-cavities which has provided suitable spaces for fluids movements and hydrothermal alteration. The plagioclases show albitisation and sericitaion alteration (An 5-10) in these rocks.
Full-Text [PDF 123 kb]   (141 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/07/7 | Accepted: 2018/07/7 | Published: 2018/07/7

1. [1] Deer W. A., Howei R. A., Zussman J., "An introduction to rock-forming minerals" John Wiley and Sons, New York, (1991) 528 p.
2. [2] Jiménez-Millán J., Abad I., Nieto F., "Contrasting alteration processes in hydrothermally altered diorites from the Betic Cordillera, Spain", Clay Minerals, 43 (2008) 1-14. [DOI:10.1180/claymin.2008.043.2.09]
3. [3] Banfield J.F., Murakami K., "Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semiregular chlorite-vermiculite", American Mineralogist, 83 (1998) 348-357. [DOI:10.2138/am-1998-3-419]
4. [4] Zane A., Sassi R., Guidotti C.V., "Newdataon metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks". The Canadian Mineralogist, 36, (1998) 713 726.
5. [5] Halter W. H., Williams-Jones A. E., Kontak D. J., "Modeling fluidrock interaction during greizenization at the East Kemptville tin deposit: implications for mineralization", Chemical Geology150 (1998), 1–17. [DOI:10.1016/S0009-2541(98)00050-3]
6. [6] Cathelineau M., "Cation site occupancy in chlorites and illites as a function of temperature" Clay Minerals 23 (1998), 471-485. [DOI:10.1180/claymin.1988.023.4.13]
7. [7] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): constraints from collisional and earlier deformation", International Journal of Earth Sciences (Geologische Rundschau) 94 (2005) 401–19. [DOI:10.1007/s00531-005-0481-4]
8. [8] Eftekharnejad J., "Tectonic division of Iran with respect to sedimentary basins", Journal of Iranian Petroleum Society, 82 (1981) 19-28 (in farsi).
9. [9] Berberian M., King G. C. P., "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 1764–1766. [DOI:10.1139/e81-163]
10. [10] Sengör A.M.C., "A new model for the late Paleozoic–Mesozoic tectonic evolution of Iran and implications for Oman, in Robertson, A.H., Searle, M.P., and Ries, A.C., eds., The Geology and Tectonics of the Oman Region" Geological Society, London, Special Publication 49 (1990) 797–831.
11. [11] Nazemzadeh M., Roshan Ravan J., Azizan H., "Geological quadrangle map of Baghat, 1:100000", Geological Survey of Iran, (1996).
12. [12] Sheikholeslami M. R., "Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj-Sirjan zone, Iran", Journal of Asian Earth Sciences, 106 (2015) 130-149. [DOI:10.1016/j.jseaes.2015.03.007]
13. [13] Monsef I., Rahgoshay M., Whitechurch H., "Petrogenetic variations of the Jurassic magmatic sequences of Hoseinabad-Hajiabad regions in Sanandaj-Sirjan zone (southern Iran)", Petrology, 1 (2011) 89-112 (in Farsi).
14. [14] Gill R., "Igneous rocks and processes", John Wilet and Sons (2010) 428 p.
15. [15] ten Grotenhuis S. M., Trouw R. A. J., Passchier C. W., "Evolution of mica fish in mylonitic rocks", Tectonophysics, (2003) 372 1-21. [DOI:10.1016/S0040-1951(03)00231-2]
16. [16] Foster M. D., "Interpretation of the composition and a classification of the chlorites", U.S. Geological Survey Professional Paper, 414A (1962) 1-33.
17. [17] de Caritat P., Hutcheon I., Walshe J. L., "Chlorite geothermometry: a review" Clays and Clays Minerals, 41 (1993) 219-239. [DOI:10.1346/CCMN.1993.0410210]
18. [18] Tabbakh Shabani A. A., "Mineral chemistry of chlorite replacing biotite from granitic rocks of the Canadian Appalachians", Journal of Sciences, Islamic Republic of Iran, 20 (2009) 265-275.
19. [19] Abdel-Rahman A. F., "Chlorites in a spectrum of igneous rocks: mineral chemistry and paragenesis", Mineralogical Magazine, 59 (1995) 129-141. [DOI:10.1180/minmag.1995.59.394.13]
20. [20] Bettison L.A., Schiffman P., "Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California", American Mineralogist, 73 (1988) 62–76.
21. [21] Eggleton R.A., Banfield J.F., "The alteration of granitic biotite to chlorite", American Mineralogist, 70 (1985) 902–910
22. [22] Olives Bafros J., Amouric M., "Biotite chloritization by interlayer brucitization as seen by HRTEM", American Mineralogist, 69 (1984) 869-87l.
23. [23] Veblen D. R., Ferry J. M., "A TEM study of the biotite-chlorite reaction and comparison with petrologic observations", American Mineralogist, 68 (1983) 1160-1168.
24. [24] Arancibia G., Fujita K., Hoshino K., Mitchell T. M., Cembrano J., Gomila R., Morata D., Faulkner D. R., Rempe M., "Hydrothermal alteration in an exhumed crustal fault zone: testing geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile", Tectonophysics, 623 (2014) 147-168.
25. [25] Jiménez-Millán J., Vázquez M., Velilla N., "deformation promoted defects and retrograde chloritization of biotite in slates from a shear zone, southern Iberian Massif, SE Spain", 55 (2007) 285-295.
26. [26] Nishimoto S., Yoshida H., "Hydrothermal alteration of deep fractured granite: Effects of dissolution and precipitation", Lithos, 115 (2010) 153-162. [DOI:10.1016/j.lithos.2009.11.015]
27. [27] Ooteman A., Ferrow E. A., Lindh A., "An electron microscopy study of deformation microstructures in granitic mylonites from southwestern Sweden, with special emphasis on the micas", Mineralogy and Petrology, 78 (2003) 255-268. [DOI:10.1007/s00710-002-0236-x]
28. [28] Bourdelle F., Parra T., Chopin C., "A new chlorite geothermometer for diaganetic to low-grade metamorphic conditions", Contribution to Mineralogy and Petrology, 165 (2013) 723-735. [DOI:10.1007/s00410-012-0832-7]
29. [29] Passchier C. W., Trow R. A. J., "Microtectonics", Springer Verlag (2015) 371 p.
30. [30] Bastias J., Fuentes F., Aguirre L., Herve F., Demant A., Deckart K., Torres T., "Very low-grade secondary minerals as indicators of Palaeo-hydrothermal systems in the Upper Cretaceous volcanic succession of Hannah Point, Living Island, Antarctica", Applied Clay Science, 134 (2016) 246-256. [DOI:10.1016/j.clay.2016.07.025]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb