Volume 32, Issue 1 (4-2024)                   www.ijcm.ir 2024, 32(1): 15-28 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghani Dashtabi S, Rahgoshay M, Mahmoody S. Petrogenesis of skarns in Hararan region in the northwest of Lalezar igneous complex using pyroxene-garnet mineralogy and temperature-pressure measurement.. www.ijcm.ir 2024; 32 (1) :15-28
URL: http://ijcm.ir/article-1-1829-en.html
1- Department of Geology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.
2- Department of Geology, Kharazmi University, Faculty of Earth Sciences, Tehran, Iran.
Abstract:   (1364 Views)
The Lalezar igneous complex is located on the border of the Sanandaj-Sirjan zone and the southeastern parts of the Urmia-Dakhtar volcanic arc and in the northeast of Baft city in Kerman Province. In the northwestern and western boundaries of the intrusive body, there are relatively wide contact metamorphic carbonate rocks. In the southern part of Hararan, the Lalezar igneous body with the Oligo-Miocene limestone and marl complex (equivalent to the Qom Formation), as large contact with metamorphism halo (skarn and marble parts), is the most widespread. Based on microscopic studies, garnet, calcite, wollastonite, pyroxene, olivine, idocrase, and epidote minerals are formed in skarns. Different metamorphic zones including garnet-clinopyroxene, olivine-clinopyroxene, wollastonite-garnet, and garnet-epidote have appeared. Based on the geochemical analysis of the minerals (EPMA), the garnets contain more than 70% grossular (calcium-rich garnet) and less than 30% almandine (iron-rich garnet). The composition of clinopyroxenes belongs to the first group (calcium-iron and magnesium) and of the wollastonite-enstatite type, where the amount of wollastonite is more than 50%. Also, there is less than 10% ferrosilite in the composition of these clinopyroxenes. Based on the garnet-clinopyroxene temperature-pressure measurement, the temperature of skarn formation, based on various equations presented, is between 413 and 530 degrees Celsius and the pressure is 1.5 to 2.5 kbar. The existing paragenesis as well as thermodynamic conditions indicate oxygen fugacity greater than 0.2. This phenomenon indicates the activity of fluids rich in silicate-rich solutions in the formation of these skarns.
 
Full-Text [PDF 912 kb]   (256 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Dimitrijevi M., et al., Geological Survey of Iran, 1: 100,000 Series: Sheet 7250. 1971, Anar.0
2. [2] Verdel C., et al., A Paleogene extensional arc flare‐up in Iran. Tectonics, 2011. 30(3). [DOI:10.1029/2010TC002809]
3. [3] Sepidbar F., et al., Origin, age and petrogenesis of barren (low-grade) granitoids from the Bezenjan-Bardsir magmatic complex, southeast of the Urumieh-Dokhtar magmatic belt, Iran. Ore Geology Reviews, 2019. 104: p. 132-147. [DOI:10.1016/j.oregeorev.2018.10.008]
4. [4] Topuz G., et al., Origin and significance of Early Miocene high‑potassium I-type granite plutonism in the East Anatolian plateau (the Taşlıçay intrusion). Lithos, 2019. 348: p. 105210. [DOI:10.1016/j.lithos.2019.105210]
5. [5] Sepidbar F., et al., Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran. Lithos, 2021. 400: p. 106401. [DOI:10.1016/j.lithos.2021.106401]
6. [6] Miller K.G., et al., The Phanerozoic record of global sea-level change. science, 2005. 310(5752): p. 1293-1298. [DOI:10.1126/science.1116412]
7. [7] Hassanzadeh J., et al., The Alborz and NW Urumieh-Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc, in Geol. Soc. Am. Abstr. Programs. 2004. p. 6.
8. [8] Berberian M., The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Canadian journal of earth sciences, 1983. 20(2): p. 163-183. [DOI:10.1139/e83-015]
9. [9] Chekani Moghadam M., Z. Tahmasbi, A. Ahmadi-khalaji, Petrogenesis of adakitic and calc-alkaline granitoids in Rabor-Lalehzar region, SE of Kerman: Constraints from geochemical and Sr-Nd isotopes results. Scientific Quarterly Journal of Geosciences, 2018. 27(108): p. 13-26.
10. [10] Stocklin J., Structural history and tectonics of Iran: A review: American Association of Petroleum Geologists Bulletin, v. 52. 1968. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
11. [11] Haghipour A., Aghanabati A., Geological Map of Iran 1: 2 500 000. 1989: Geological survey of Iran.
12. [12] Winkler H.G., Metamorphism of Marls, in Petrogenesis of Metamorphic Rocks. 1976, Springer. p. 139-150. [DOI:10.1007/978-1-4615-9633-2_10]
13. [13] Mackenzie F.T., Garrels R., Evolution of sedimentary rocks. 1971: Norton New York.
14. [14] Baxter E.F., Scherer E.E., Garnet geochronology: timekeeper of tectonometamorphic processes. Elements, 2013. 9(6): p. 433-438. [DOI:10.2113/gselements.9.6.433]
15. [15] Wood B.J., Kiseeva E.S., Matzen A.K., Garnet in the Earth's Mantle. Elements, 2013. 9(6): p. 421-426. [DOI:10.2113/gselements.9.6.421]
16. [16] Zhou J., Feng C., Li D., Geochemistry of the garnets in the Baiganhu W-Sn orefield, NW China. Ore Geology Reviews, 2017. 82: p. 70-92. [DOI:10.1016/j.oregeorev.2016.11.019]
17. [17] Sun C., Liang Y., A REE-in-garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chemical Geology, 2015. 393: p. 79-92. [DOI:10.1016/j.chemgeo.2014.11.014]
18. [18] Jamtveit B., Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: Nonlinear dynamics in regions of immiscibility. American Mineralogist, 1991. 76(7-8): p. 1319-1327.
19. [19] Meinert L.D., Skarns and skarn deposits. Geoscience Canada, 1992.
20. [20] Deer W.A., Howie R.A., Zussman J., Rock-forming minerals: single-chain silicates, Volume 2A. 1997. Geological Society of London.
21. [21] Yang Y.F., et al., Evolution of ore fluids in the Donggou giant porphyry Mo system, East Qinling, China, a new type of porphyry Mo deposit: evidence from fluid inclusion and H-O isotope systematics. Ore Geology Reviews, 2015. 65: p. 148-164. [DOI:10.1016/j.oregeorev.2014.09.011]
22. [22] Morimoto N., Nomenclature of pyroxenes: subcommitee on pyroxenes Commission on New Minerals and Mineral Names (CNMMN) International Mineral Association (IMA). Schweizerische Mineralogische und Petrographische Mitteilungen, 1988. 68(1): p. 95-111.
23. [23] Zamanian H., et al., Thermobarometry in the Sarvian Fe-skarn deposit (Central Iran) based on garnet-pyroxene chemistry and fluid inclusion studies. Arabian Journal of Geosciences, 2017. 10(3): p. 1-16. [DOI:10.1007/s12517-016-2785-z]
24. [24] Kushiro I., Si-Al relation in clinopyroxenes from igneous rocks. American journal of science, 1960. 258(8): p. 548-554. [DOI:10.2475/ajs.258.8.548]
25. [25] Torkian A., Salehi N., Mineral chemistry of pyroxenes and geothermobarometry of the basic rocks, NE-Qorveh (Kurdistan). Iranian Journal of Crystallography and Mineralogy, 2015. 22(4): p. 659-670.
26. [26] Schweitzer E., Papike J., Bence A., Statistical analysis of clinopyroxenes from deep-sea basalts. American Mineralogist, 1979. 64(5-6): p. 501-513.
27. [27] Deer W.A., Howie R.A., Zussman J., Rock-forming minerals: disilicates and ring silicates, volume 1B. 1997. Geological Society of London
28. [28] Bohlen S.R., Liotta J.J., A barometer for garnet amphibolites and garnet granulites. Journal of Petrology, 1986. 27(5): p. 1025-1034. [DOI:10.1093/petrology/27.5.1025]
29. [29] Krogh E.J., The garnet-clinopyroxene Fe-Mg geothermometer-a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 1988. 99(1): p. 44-48. [DOI:10.1007/BF00399364]
30. [30] Råheim A., Green D.H., Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Contributions to mineralogy and Petrology, 1974. 48(3): p. 179-203. [DOI:10.1007/BF00383355]
31. [31] Ganguly J., Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. Geochimica et Cosmochimica Acta, 1979. 43(7): p. 1021-1029. [DOI:10.1016/0016-7037(79)90091-7]
32. [32] Ellis D., Green D., An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 1979. 71(1): p. 13-22. [DOI:10.1007/BF00371878]
33. [33] Meinert L.D., Dipple G.M., Nicolescu S., World skarn deposits. 2005. [DOI:10.5382/AV100.11]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb