1. [1] Dimitrijevi M., et al., Geological Survey of Iran, 1: 100,000 Series: Sheet 7250. 1971, Anar.0
2. [2] Verdel C., et al., A Paleogene extensional arc flare‐up in Iran. Tectonics, 2011. 30(3). [
DOI:10.1029/2010TC002809]
3. [3] Sepidbar F., et al., Origin, age and petrogenesis of barren (low-grade) granitoids from the Bezenjan-Bardsir magmatic complex, southeast of the Urumieh-Dokhtar magmatic belt, Iran. Ore Geology Reviews, 2019. 104: p. 132-147. [
DOI:10.1016/j.oregeorev.2018.10.008]
4. [4] Topuz G., et al., Origin and significance of Early Miocene high‑potassium I-type granite plutonism in the East Anatolian plateau (the Taşlıçay intrusion). Lithos, 2019. 348: p. 105210. [
DOI:10.1016/j.lithos.2019.105210]
5. [5] Sepidbar F., et al., Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran. Lithos, 2021. 400: p. 106401. [
DOI:10.1016/j.lithos.2021.106401]
6. [6] Miller K.G., et al., The Phanerozoic record of global sea-level change. science, 2005. 310(5752): p. 1293-1298. [
DOI:10.1126/science.1116412]
7. [7] Hassanzadeh J., et al., The Alborz and NW Urumieh-Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc, in Geol. Soc. Am. Abstr. Programs. 2004. p. 6.
8. [8] Berberian M., The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Canadian journal of earth sciences, 1983. 20(2): p. 163-183. [
DOI:10.1139/e83-015]
9. [9] Chekani Moghadam M., Z. Tahmasbi, A. Ahmadi-khalaji, Petrogenesis of adakitic and calc-alkaline granitoids in Rabor-Lalehzar region, SE of Kerman: Constraints from geochemical and Sr-Nd isotopes results. Scientific Quarterly Journal of Geosciences, 2018. 27(108): p. 13-26.
10. [10] Stocklin J., Structural history and tectonics of Iran: A review: American Association of Petroleum Geologists Bulletin, v. 52. 1968. [
DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
11. [11] Haghipour A., Aghanabati A., Geological Map of Iran 1: 2 500 000. 1989: Geological survey of Iran.
12. [12] Winkler H.G., Metamorphism of Marls, in Petrogenesis of Metamorphic Rocks. 1976, Springer. p. 139-150. [
DOI:10.1007/978-1-4615-9633-2_10]
13. [13] Mackenzie F.T., Garrels R., Evolution of sedimentary rocks. 1971: Norton New York.
14. [14] Baxter E.F., Scherer E.E., Garnet geochronology: timekeeper of tectonometamorphic processes. Elements, 2013. 9(6): p. 433-438. [
DOI:10.2113/gselements.9.6.433]
15. [15] Wood B.J., Kiseeva E.S., Matzen A.K., Garnet in the Earth's Mantle. Elements, 2013. 9(6): p. 421-426. [
DOI:10.2113/gselements.9.6.421]
16. [16] Zhou J., Feng C., Li D., Geochemistry of the garnets in the Baiganhu W-Sn orefield, NW China. Ore Geology Reviews, 2017. 82: p. 70-92. [
DOI:10.1016/j.oregeorev.2016.11.019]
17. [17] Sun C., Liang Y., A REE-in-garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chemical Geology, 2015. 393: p. 79-92. [
DOI:10.1016/j.chemgeo.2014.11.014]
18. [18] Jamtveit B., Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: Nonlinear dynamics in regions of immiscibility. American Mineralogist, 1991. 76(7-8): p. 1319-1327.
19. [19] Meinert L.D., Skarns and skarn deposits. Geoscience Canada, 1992.
20. [20] Deer W.A., Howie R.A., Zussman J., Rock-forming minerals: single-chain silicates, Volume 2A. 1997. Geological Society of London.
21. [21] Yang Y.F., et al., Evolution of ore fluids in the Donggou giant porphyry Mo system, East Qinling, China, a new type of porphyry Mo deposit: evidence from fluid inclusion and H-O isotope systematics. Ore Geology Reviews, 2015. 65: p. 148-164. [
DOI:10.1016/j.oregeorev.2014.09.011]
22. [22] Morimoto N., Nomenclature of pyroxenes: subcommitee on pyroxenes Commission on New Minerals and Mineral Names (CNMMN) International Mineral Association (IMA). Schweizerische Mineralogische und Petrographische Mitteilungen, 1988. 68(1): p. 95-111.
23. [23] Zamanian H., et al., Thermobarometry in the Sarvian Fe-skarn deposit (Central Iran) based on garnet-pyroxene chemistry and fluid inclusion studies. Arabian Journal of Geosciences, 2017. 10(3): p. 1-16. [
DOI:10.1007/s12517-016-2785-z]
24. [24] Kushiro I., Si-Al relation in clinopyroxenes from igneous rocks. American journal of science, 1960. 258(8): p. 548-554. [
DOI:10.2475/ajs.258.8.548]
25. [25] Torkian A., Salehi N., Mineral chemistry of pyroxenes and geothermobarometry of the basic rocks, NE-Qorveh (Kurdistan). Iranian Journal of Crystallography and Mineralogy, 2015. 22(4): p. 659-670.
26. [26] Schweitzer E., Papike J., Bence A., Statistical analysis of clinopyroxenes from deep-sea basalts. American Mineralogist, 1979. 64(5-6): p. 501-513.
27. [27] Deer W.A., Howie R.A., Zussman J., Rock-forming minerals: disilicates and ring silicates, volume 1B. 1997. Geological Society of London
28. [28] Bohlen S.R., Liotta J.J., A barometer for garnet amphibolites and garnet granulites. Journal of Petrology, 1986. 27(5): p. 1025-1034. [
DOI:10.1093/petrology/27.5.1025]
29. [29] Krogh E.J., The garnet-clinopyroxene Fe-Mg geothermometer-a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 1988. 99(1): p. 44-48. [
DOI:10.1007/BF00399364]
30. [30] Råheim A., Green D.H., Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Contributions to mineralogy and Petrology, 1974. 48(3): p. 179-203. [
DOI:10.1007/BF00383355]
31. [31] Ganguly J., Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. Geochimica et Cosmochimica Acta, 1979. 43(7): p. 1021-1029. [
DOI:10.1016/0016-7037(79)90091-7]
32. [32] Ellis D., Green D., An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 1979. 71(1): p. 13-22. [
DOI:10.1007/BF00371878]
33. [33] Meinert L.D., Dipple G.M., Nicolescu S., World skarn deposits. 2005. [
DOI:10.5382/AV100.11]