Volume 28, Issue 4 (12-2020)                   www.ijcm.ir 2020, 28(4): 921-932 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi, Ahmadi, Partabian. Mineral chemistry and thermobarometry of Kurdistan ophiolitic peridotites, Zagros, western Iran. www.ijcm.ir 2020; 28 (4) :921-932
URL: http://ijcm.ir/article-1-1558-en.html
Abstract:   (1435 Views)
The mineralogical composition and geothermobarometry of the peridotites from the Marivan-Kamyaran ophiolitic complex, as a part of the Neo-Tethyian ophiolites in the Zagros Mountains, western Iran, are investigated. The studied samples are belonged to mantle and crustal peridotite types. Results of electron probe microanalysis in peridotites indicate that olivine is forsterite (Fo87-Fo92), clinopyroxene is augite-diopside (En48-56Fs3-6Wo39-49) and orthopyroxene is enstatite (En90-91). Cr-number (Cr#) and Al-number (Al#) in spinels of the mantle peridotites are 33-59 and 41-67, respectively. The same values in spinels of the crustal peridotites are 67-98 and 2-32, respectively. Geothermobarometry calculations for the mantle peridotites show average temperature of ~1104°C and average pressure of ~14 kbar. The crustal peridotites are formed at ~900 °C and ~7 kbar. Two distinct mineral chemistry of the mantle peridotites indicate existence of two types of mantle peridotites in the area, suggesting the possibility of the influence of melt-rock interaction on the chemical composition of the mantle peridotites in the area.
Full-Text [PDF 1043 kb]   (384 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Dick H.J., Fisher R.L., Bryan W.B., "Mineralogical variability of the uppermost mantle along mid-ocean ridges", Earth and Planetary Science Letters 69 (1984), 88-106. [DOI:10.1016/0012-821X(84)90076-1]
2. [2] Michael P.J., Bonatti E., "Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting", Earth and Planetary Science Letters 73 (1985), 91-104. [DOI:10.1016/0012-821X(85)90037-8]
3. [3] Niu Y., "Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges", Journal of Petrology 45 (2004), 2423-2458. [DOI:10.1093/petrology/egh068]
4. [4] Iyer K., Austrheim H., John T., Jamtveit B., "Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway", Chemical Geology 249 (2008), 66-90. [DOI:10.1016/j.chemgeo.2007.12.005]
5. [5] Deschamps F., Guillot S., Godard M., Chauvel C., Andreani M., Hattori K., "In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones", Chemical Geology 269 (2010), 262-277. [DOI:10.1016/j.chemgeo.2009.10.002]
6. [6] Birner S.K., Warren J.M., Cottrell E., Davis F.A., "Hydrothermal alteration of seafloor peridotites does not influence oxygen fugacity recorded by spinel oxybarometry", Geology 44 (2016) 535-538. [DOI:10.1130/G38113.1]
7. [7] Liipo J., Vuollo J., Nykanen V., Piirainen T., Pekkarinen L., Tuokko I., "Chromites from the Early Proterozoic Outokumpu-Jormua ophiolite belt: a comparision with chromites from Mesozoic ophiolites", Lithos 36 (1995) 15-27. [DOI:10.1016/0024-4937(95)00002-W]
8. [8] Leterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series", Earth and Planetary Science Letters, 59 (1982): 139-154. [DOI:10.1016/0012-821X(82)90122-4]
9. [9] Mahmoudi, S., Vaisy Nya, A., Mokhtari, M., "Mineral chemistry and geothermobarometry of gabbroic dykes ‎of the Garmab Ophiolite sequence ‎‎(Northeast of Kamyaran)", (in Persian). Iranian Journal of Petrology, 9 (2018): 121-146.
10. [10] Veisinia, A., Ebrahimi, M., Mokhtari, A. A., Amadian, J., Azimzadeh, A. M., "Mineral Chemistry and Tectonic Setting of Peridotites of the Garmab Ophiolitic Sequence, NE Kamyaran", (in Persian). Kharazmi Journal of Earth Sciences, 3 (2018): 241-266. [DOI:10.29252/gnf.3.2.241]
11. [11] Veisinia, A., Ebrahimi, M., Mokhtari, M., Ahmadian, J., Azimzadeh, A., "Application of Cr-spinel mineral chemistry in petrogenetic evolution and tectonic setting of NE Kamyaran ophiolitic complex", (in Persian). Iranian Journal of Crystallography and mineralogy, 26 (2018): 581-596. [DOI:10.29252/ijcm.26.3.581]
12. [12] Rahimzadeh, B., Veisinia, A., Ebrahimi, M., Esmaeili, R., "Geochemistry and Geodynamic setting of Crustal sequence in Shahini ophiolitic complex, NW of Kamyaran", (in Persian). Iranian Journal of Petrology, 10 (2019): 101-130.
13. [13] Droop G. T. R., "A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria", Mineralogical Magazine 51(1987) 431- 435. [DOI:10.1180/minmag.1987.051.361.10]
14. [14] Ali S.A., Buckman S., Aswad K., Jones B., Ismail S., Nutman A., "Recognition of Late Cretaceous Hasanbag ophiolite-arc rocks in the Kurdistan Region of the Iraqi Zagros suture zone: A missing link in the paleogeography of the closing Neotethys Ocean", Lithosphere 4 (2012), 395-410. [DOI:10.1130/L207.1]
15. [15] Shafaii-Moghadam H., Stern R.J. "Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites", Journal of Asian Earth Sciences 100 (2015), 31-59. [DOI:10.1016/j.jseaes.2014.12.016]
16. [16] Amini S., Moradpour N., Zareii Sahamieh R., "Petrography, geochemistry and petrology of the South Sahneh Ophiolite Complex (NE Kermanshah)", (in Persian). Iranian Journal of Crystallography and mineralogy 13 (2007) 225-246.
17. [17] Mousavi S.A., Aliani F., Maanijou M., Sepahi A.A., "Petrography and geochemistry of pillow lavas and related mafic, intermediate and felsic rocks in ophiolitic sequence of Sahneh-Harsin (north east of Kermanshah)", (in Persian). Iranian Journal of Crystallography and mineralogy 21 (2013) 253-266.
18. [18] Torkian A., Daraeezadeh Z., Aliani F., Noghreyan M., "Application of geochemical data for determining tectonic setting of the diabasic dykes in the Kermanshah ophiolite; Sahneh-Harsin area", (in Persian). Iranian Journal of Crystallography and mineralogy 21 (2013) 331-342.
19. [19] Zareii Sahamieh R., Moradpour A., "Geochemistry and petrology of the Harsin-Sahneh ophiolitic complex (NE Kermanshah-West of Iran): Implication for the tectonic of Southern NeoTethys", (in Persian). Iranian Journal of Crystallography and mineralogy 23 (2015) 331-344.
20. [20] Sudi Ajirlu M, Hajialioghli R, Moazzen M.,"Mineral chemistry and Tectonic setting of diabasic dykes of Kamyaran ophiolite complex, Western Iran", (in Persian). Iranian Journal of Crystallography and mineralogy 25 (2017) 609-618. [DOI:10.18869/acadpub.ijcm.25.3.609]
21. [21] Aziz N.R., Aswad K.J., Koyi H.A., "Contrasting settings of serpentinite bodies in the northwestern Zagros Suture Zone, Kurdistan Region, Iraq", Geological magazine 148 (2011), 819-837. [DOI:10.1017/S0016756811000409]
22. [22] Mohammad Y.O., "P-T evolution of meta-peridotite in the Penjwin ophiolite, northeastern Iraq", Arabian Journal of Geosciences 6 (2013), 505-518. [DOI:10.1007/s12517-011-0372-x]
23. [23] Wells A.J., "The crush zone of the Iranian Zagros mountains, and its implications", Geological magazine 106 (1969), 385-394. [DOI:10.1017/S0016756800058787]
24. [24] Alavi M., "Tectonics of the Zagros orogenic belt of Iran: new data and interpretations", Tectonophysics 229 (1994), 211-238. [DOI:10.1016/0040-1951(94)90030-2]
25. [25] Stöcklin J., "Structural history and tectonics of Iran: a review", AAPG Bulletin 52 (1968), 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
26. [26] Berberian M., King G., "Towards a paleogeography and tectonic evolution of Iran", Canadian journal of earth sciences 18 (1981), 210-265. [DOI:10.1139/e81-019]
27. [27] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monié P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process", Geological Magazine 148 (2011), 692-725. [DOI:10.1017/S001675681100046X]
28. [28] Karimi A., Ahmadi A., Partabian A., "Petrography and Geochemistry of ophiolitic basalts from Marivan-Palangan region (Zagros, western Iran)", (in Persian). Iranian Journal of Petrology 10 (2019) 75-96.
29. [29] Karimi A., Ahmadi A., Partabian A., "Potential soil pollution by heavy metals in Kurdistan region, western Iran: the impact of ultramafic bedrock", (in Persian). Geopersia (In press) doi: 10.22059/geope.2019.273444.648443.
30. [30] Karimi A., Ahmadi A., Partabian A., "Field relationship, petrography and hydrous phases of mantle peridotites of the Kamyaran-Palangan ophiolite, Zagros, W Iran", (in Persian). 1st International Conference on Biology and Earth Sciences (2019) https://www.civilica.com/Paper-BIOLOGY01-BIOLOGY01_002.html.
31. [31] Hoffman M.A., Walker D., "Textural and chemical variations of olivine and chrome spinel in the East Dover ultramafic bodies, south-central Vermont", Geological Society of America Bulletin 89 (1978) 699-710. https://doi.org/10.1130/0016-7606(1978)89<699:TACVOO>2.0.CO;2 [DOI:10.1130/0016-7606(1978)892.0.CO;2]
32. [32] Farahat E., "Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: their metamorphism and petrogenetic implications", Chemie der Erde-Geochemistry 68 (2008) 193-205. [DOI:10.1016/j.chemer.2006.01.003]
33. [33] Hunter R., "Texture development in cumulate rocks", Developments in Petrology, Elsevier 15 (1996) 77-101. [DOI:10.1016/S0167-2894(96)80005-4]
34. [34] Deer W.A., Howie R.A., Zussman J., "An Introduction to the Rock-Forming Minerals", Longman Scientific and Technical, Hong Kong, (1992) 558p.
35. [35] Morimoto N., "Nomenclature of pyroxenes", Mineralogy and Petrology 39 (1988) 55-76. [DOI:10.1007/BF01226262]
36. [36] Jan, M.Q., Windley, B.F., "Chromian spinel-silicate chemistryin ultramafic rocks of the Jijal complex, northwest Pakistan", Journal of Petrology 31 (1990) 667-715. [DOI:10.1093/petrology/31.3.667]
37. [37] Fabriès J., "Spinel-olivine geothermometry in peridotites from ultramafic complexes", Contributions to Mineralogy and Petrology 69 (1979) 329-336. [DOI:10.1007/BF00372258]
38. [38] Roeder P.L., Campbell I.H., Jamieson H.E., "A re-evaluation of the olivine-spinel geothermometer", Contributions to Mineralogy and Petrology 68 (1979) 325-334. [DOI:10.1007/BF00371554]
39. [39] Wood B.J., Banno S., "Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems", Contributions to Mineralogy and Petrology 42 (1973) 109-124. [DOI:10.1007/BF00371501]
40. [40] Wells P.R., "Pyroxene thermometry in simple and complex systems", Contributions to mineralogy and Petrology 62 (1977) 129-139. [DOI:10.1007/BF00372872]
41. [41] Nimis P., Taylor W.R., "Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology 139 (2000) 541-554. [DOI:10.1007/s004100000156]
42. [42] Takahashi E., Uto K., Schilling J.G., "Primary magma compositions and Mg/Fe ratios of their mantle residues along Mid Atlantic Ridge 29°N to 73°N", Technical Report of ISEI Okayama Univ., Ser. A, 9 (1987) 1-14.
43. [43] Franz L., Wirth R., "Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere", Contributions to Mineralogy and Petrology 140 (2000) 283-295. [DOI:10.1007/s004100000188]
44. [44] Kornprobst, J., Ohnenstetter, D., Ohnenstetter, M., Ohnenstetter, M., "Na and Cr contents in Cpx from peridotites: a possible discriminant between subconti-nental and sub-oceanic mantle", Earth Planetary Science Letters 53 (1981) 241-254. [DOI:10.1016/0012-821X(81)90157-6]
45. [45] Ozawa K., "Evaluation of olivine-spinel geothermometry as an indicator of thermal history for peridotites", Contributions to Mineralogy and Petrology 82 (1983) 52-65. [DOI:10.1007/BF00371175]
46. [46] Kelemen P.B., "Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite", Journal of Petrology 31 (1990) 51-98. [DOI:10.1093/petrology/31.1.51]
47. [47] Kelemen P.B., Joyce D.B., Webster J.D., Holloway J.R., "Reaction between ultramafic rock and fractionating basaltic magma II. Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150-1050oC and 5 kb", Journal of Petrology 31 (1990) 99-134. [DOI:10.1093/petrology/31.1.99]
48. [48] Kelemen P.B., Dick H.J., Quick J.E., "Formation of harzburgite by pervasive melt/rock reaction in the upper mantle", Nature 358 (1992) 635-641. [DOI:10.1038/358635a0]
49. [49] Arai S., "Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites", Journal of Volcanology and Geothermal Research 59 (1994) 279-293. [DOI:10.1016/0377-0273(94)90083-3]
50. [50] Pollack H.N., Chapman D.S., "On the regional variation of heat flow, geotherms, and lithospheric thickness", Tectonophysics 38 (1977) 279-296. [DOI:10.1016/0040-1951(77)90215-3]
51. [51] Takahashi E., Kushiro I., "Melting of a dry peridotite at high pressures and basalt magma genesis", American Mineralogist 68 (1983) 859-879

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb