Raheleh Pilevar Shahri, Soniya Shafei, Shekoufeh Tabatabai Yazdi,
Volume 28, Issue 1 (3-2020)
Abstract
The In-doped vanadium pentoxide nanostructures with different doping levels including 0, 10, 20 and 30 at.% were prepared by the spray pyrolysis technique. The prepared thin films were characterized by the x-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results revealed that the films were crystalline in tetragonal phase. Increasing the In-doping level made the structure more disordered and decreased the crystallite size up to more than 50% for V2O5: In30at.% with respect to the pristine sample. The SEM results showed single phased nanorod- and nanobelt-shaped V2O5 structures with average diameters of 50-100 nm. The Hall effect measurements showed that all the involved films are n-type semiconductors whose resistance increases with In content; this also can be related to the enhanced structural disorder of the samples.