Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 697-710 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahangari M. Origin of tourmaline and garnet in west Qushchi mylonite granite (NW Iran); constrains on petrogenesis of parental rock . www.ijcm.ir. 2018; 25 (4) :697-710
URL: http://ijcm.ir/article-1-989-en.html
Urmia University
Abstract:   (2195 Views)
The studied mylonite granites are exposed as small bodies at the west of Qushchi in the West Azarbaijan Province. These rocks contain orthoclase, microcline, plagioclase, fish muscovite, tourmaline ± garnet as porphyroclast. The matrix is composed of recrystallized quartz, fine grained muscovite and low abundant epidote. According to petrographic and mineral chemistry studies and BSE images, tourmaline and garnet are chemically zoned. The mineral chemistry characteristics of core of tourmaline and garnet crystals indicate magmatic origin for them, while the composition of rim part for these minerals, especially for garnet, is consistent with metamorphic origin. Presence of tourmaline + muscovite ± Mn-rich garnet in the West Qushchi mylonite granites and occurrence of these rocks as small bodies within metasedimentary rocks suggested that the west Qushchi mylonite granites are formed by low grade partial melting of the metamorphic rocks. On the basis of the mineral assemblage, it seems that the studied rocks belong to Mg-poor peraluminous leucogranite type rocks.
Full-Text [PDF 125 kb]   (544 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/25 | Accepted: 2017/11/25 | Published: 2017/11/25

1. [1] Clarke D.B., "The mineralogy of peraluminous granites; a review", The Canadian Mineralogist 19 (1981) 3-17.
2. [2] Pesquera A., Torres Ruiz J., Garcia-Casco A., Gil Crespo P. P., "Evaluating the controls on tourmaline formation in granitic systems: a case study on peraluminous granites from the Central Iberian Zone (CIZ), western Spain", Journal of Petrology 54 (2013) 609-634. [DOI:10.1093/petrology/egs080]
3. [3] Deer W.A., Howie R.A., Zussman J., "Rock forming minerals. Volume 1B Disilicates and ring silicates", (1986), London: Longman. 629.
4. [4] Henry D.J., Guidotti C.V., "Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine", American Mineralogist 70 (1985) 1-15.
5. [5] Ethier V.G., Campbell F.A., "Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance", Canadian Journal of Earth Sciences 14 (1977) 2348-2363. [DOI:10.1139/e77-202]
6. [6] Dutrow B. L., Henry D. J., "Tourmaline: A Geologic DVD", Elements 7(2011) 301-306. [DOI:10.2113/gselements.7.5.301]
7. [7] van Hinsberg V. J., Schumacher J. C., "Tourmaline as a petrogenetic indicator mineral in the Haut-Allier metamorphic suite, Massif Central, France", The Canadian Mineralogist 49 (2011) 177-194. [DOI:10.3749/canmin.49.1.177]
8. [8] Yang J. -h., Peng J. t., Hu R. z., Bi X. w., Zhao J. h., Fu Y. z., Shen N. P., "Garnet geochemistry of tungsten-mineralized Xihuashan granites in South China", Lithos 177 (2013) 79-90. [DOI:10.1016/j.lithos.2013.06.008]
9. [9] London D., Manning D.A.C., "Chemical Variation and Significance of tourmaline from southwest England", Economic Geology 90 (1995) 495-519. [DOI:10.2113/gsecongeo.90.3.495]
10. [10] Wolf M.B., London D., "Boron in granitic magmas: Stability of tourmaline in equilibrium with biotite and cordierite", Contributions to Mineralogy and Petrology 130 (1997) 12-30. [DOI:10.1007/s004100050346]
11. [11] Benard F., Moutou P., Pichavant M., "Phase-relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas", Journal of Geology 93 (1985) 271-291. [DOI:10.1086/628952]
12. [12] Holtz F., Johannes W., "Effect of tourmaline on melt fraction and composition of first melts in quartzofeldspathic gneiss", European Journal of Mineralogy 3 (1991) 527-536. [DOI:10.1127/ejm/3/3/0527]
13. [13] Scaillet B., Pichavant M., Roux J., "Experimental crystallization of leucogranite magmas", Journal of Petrology 36 (1995) 663-705. [DOI:10.1093/petrology/36.3.663]
14. [14] Stocklin J., "Structures history and tectonic of Iran: A review", American Association of Petroleum Geologist Bulletin 52 (1968) 1229-1258.
15. [15] Alavi M., "Tectonic map of the Middle East, scale: 1:5,000,000", Tehran, Iran, Geological Survey of Iran (1991) one sheet.
16. [16] Alavi M., "Tectonics of Zagros Orogenic belt of Iran, new data and interpretation", Tectonophysics 229 (1994) 211-238. [DOI:10.1016/0040-1951(94)90030-2]
17. [17] Berberian M., King G.C.P., "Towards a palegeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences 18 (1981) 210-265. [DOI:10.1139/e81-019]
18. [18] Alavi-Naini M., "Etude geologique de la region de Djam", Geological Survey of Iran, Reports 23 (1972) 1-288.
19. [19] Eftekharnejad J., "Tectonic division of Iran with respect to sedimentary basins", Journal of Iranian Petroleum Society 82 (1981) 19-28 (in Farsi).
20. [20] Nabavi M.H., "An introduction to the geology of Iran", Geological survey of Iran (1976) (in Farsi).
21. [21] Khodabandeh A. A., Soltanni G. A., Sartipi A. H., Emami M. H., "Geological map of Iran, 1:100,000 series sheet Salmas", Geological Survey of Iran, Tehran, (2002).
22. [22] Sabzehi M., Mohammadiha K., "Geological map of Gangejin (Serow), Scale 1:100000", Geological Survey of Iran (2003).
23. [23] Yavuz F., Karakaya N., Yıldırım D. K., Karakaya M. C., "A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011)", Computers and Geosciences 63 (2014) 70-87. [DOI:10.1016/j.cageo.2013.10.012]
24. [24] Henry D. J., Novák M., Hawthorne F. C., Ertl A., Dutrow B. L., Uher P., Pezzotta F., "Nomenclature of the tourmaline-supergroup minerals", American Mineralogist 96 (2011) 895-913. [DOI:10.2138/am.2011.3636]
25. [25] Rosenberg P. E., Foit F. F., "Synthesis and characterization of alkali-free tourmaline", American Mineralogist 64 (1979) 180-186.
26. [26] Collines A. C., "Mineralogy and geochemistry of tourmaline in contrasting hydrothermal system. Coplapo area, Northern Chile", (2010), University of Arizona.
27. [27] Trumbull R. B., Chaussidon M., "Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite- pegmatite system in Swaziland", Chemical Geology 153 (1999) 125-137. [DOI:10.1016/S0009-2541(98)00155-7]
28. [28] Henry D. J., Dutrow B. L., "Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece", American Mineralogist 86 (2001) 1130-1142. [DOI:10.2138/am-2001-1002]
29. [29] Novak M., Povondra P., Selway J. B., "Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic", European Journal of Mineralogy 16 (2004) 323-333. [DOI:10.1127/0935-1221/2004/0016-0323]
30. [30] Manning D. A. C., "Chemical and morphological Variation in tourmalines from the Hub Kapong batholith of Peninsular Thailand", Mineralogical Magazine 45 (1982) 139-147. [DOI:10.1180/minmag.1982.045.337.16]
31. [31] Miller C. F., Stoddard E. F., Bradfish L. J., Dollase W. A., "Composition of plutonic muscovite; genetic implications", The Canadian Mineralogist 19 (1981) 25-34.
32. [32] Tartèse R., Boulvais P., "Differentiation of peraluminous leucogranites "en route" to the surface", Lithos 114 (2010) 353-368. [DOI:10.1016/j.lithos.2009.09.011]
33. [33] Henry D. J., Dutrow B. L., "Metamorphic tourmaline and its petrologic applications", Reviews in Mineralogy and Geochemistry 33 (1996) 503-557.
34. [34] Jiang S. Y., Palmer M. R., Slack J. F., Shaw D. R., "Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia", Economic Geology 93 (1998) 47-67. [DOI:10.2113/gsecongeo.93.1.47]
35. [35] Jiang S.Y., Radvanec M., Nakamura E., Palmer M., Kobayashi K., Zhao H.X., Zhao K.D., "Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution", Lithos 106 (2008) 1-11. [DOI:10.1016/j.lithos.2008.04.004]
36. [36] Pesquera A., Torres Ruiz J., Gil Crespo P. P., Velilla N., "Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Caceres, Spain)", American Mineralogist 84 (1999) 55-69. [DOI:10.2138/am-1999-1-206]
37. [37] Trumbull R. B., Chaussidon M., "Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite–pegmatite system in Swaziland", Chemical Geology 153 (1999) 125-137. [DOI:10.1016/S0009-2541(98)00155-7]
38. [38] Pivec E., Stemprok M., Novak J. K., Lang M., "Tourmaline as a late-magmatic or postmagmatic mineral in granites of the Czech part of the Krusne hory - Erzgebirge batholith", Journal of the Czech Geological Society 43 (1998) 17-23.
39. [39] Gaweda A., Pieczka A., Kraczka J., "Tourmalines from the Western Tatra Mountains (W-Carpathians, S-Poland): Their characteristics and petrogenetic importance", European Journal of Mineralogy 14 (2002) 943-955. [DOI:10.1127/0935-1221/2002/0014-0943]
40. [40] Pirajno F., Smithies R. H., "The FeO/(FeO+MgO) ratio of tourmaline: A useful indicator of spatial variations in granite-related hydrothermal mineral deposits", Journal of Geochemical Exploration 42 (1992) 371-381. [DOI:10.1016/0375-6742(92)90033-5]
41. [41] Zhang J., Ma C., She Z., "An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints", Geoscience Frontiers 3 (2012) 635-646. [DOI:10.1016/j.gsf.2011.11.011]
42. [42] René M., Stelling J., "Garnet-bearing granite from the Třebíč pluton, Bohemian Massif (Czech Republic)", Mineralogy and Petrology 91 (2007) 55-69. [DOI:10.1007/s00710-007-0188-2]
43. [43] Clemens J. D., Wall V. J., "Origin and evolution of a peraluminous silicic ignimbrite suite: The Violet Town Volcanics", Contributions to Mineralogy and Petrology 88 (1984) 354-371. [DOI:10.1007/BF00376761]
44. [44] Clemens J. D., Wall, V. J., "Origin and crystallization of some peraluminous (S-type) granitic magmas", The Canadian Mineralogist 19 (1981) 111-131.
45. [45] Gilbert J. S., Rogers N. W., "The significance of garnet in the Permo-Carboniferous volcanic rocks of the Pyrenees", Journal of the Geological Society 146 (1989) 477-490. [DOI:10.1144/gsjgs.146.3.0477]
46. [46] Lackey J. S., Valley J. W., Hinke H. J., "Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada batholith", Contributions to Mineralogy and Petrology 151 (2005) 20-44. [DOI:10.1007/s00410-005-0043-6]
47. [47] Mirnejad H., Blourian G. H., Kheirkhah M., Akrami M. A., Tutti F., "Garnet-bearing rhyolite from Deh-Salm area, Lut block, Eastern Iran: anatexis of deep crustal rocks", Mineralogy and Petrology 94 (2008) 259-269. [DOI:10.1007/s00710-008-0015-4]
48. [48] Stone J., "The significance of almandine garnets in the Lundy and Dartmoor granites", Mineralogical Magazine 52 (1988) 651-658. [DOI:10.1180/minmag.1988.052.368.09]
49. [49] Harrison T.N., "Magmatic garnets in the Cairngorm granite, Scotland", Mineralogical Magazine 52 (1988) 659-667. [DOI:10.1180/minmag.1988.052.368.10]
50. [50] Pe-Piper G., "Origin of S-type granites coeval with I-type granites in the Hellenic subduction system, Miocene of Naxos, Greece", European Journal of Mineralogy 12 (2000) 859-875. [DOI:10.1127/ejm/12/4/0859]
51. [51] Whitworth M. P., Feely M., "The compositional range of magmatic Mn-garnets in the Galway Granite, Connemara, Ireland", Mineralogical Magazine 58 (1994) 163-168. [DOI:10.1180/minmag.1994.058.390.16]
52. [52] Manning D. A. C., "Chemical variation in garnets from aplites and pegmatites, peninsular Thailand", Mineralogical Magazine 47 (1983) 353-358. [DOI:10.1180/minmag.1983.047.344.10]
53. [53] du Bray E.A., "Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis- southeastern Arabian Shield", Contributions to Mineralogy and Petrology 100 (1988) 205-212. [DOI:10.1007/BF00373586]
54. [54] Dahlquist J. A., Galindo C., Pankhurst R. J., Rapela C. W., Alasino P. H., Saavedra J., Fanning C. M., "Magmatic evolution of the Pe-ón Rosado granite: Petrogenesis of garnet-bearing granitoids", Lithos 95 (2007) 177-207. [DOI:10.1016/j.lithos.2006.07.010]
55. [55] Miller C. F., Stoddard E. F., "The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California", The Journal of Geology 89 (1981) 233-246. [DOI:10.1086/628582]
56. [56] London D., "Pegmatites", The Canadian Mineralogist Special Publication (2008) 10.
57. [57] Lima S. S. M., Neiva A. M. R., Ramos J. M. F., "Geochemistry of garnets from a tonalite and granitic aplite–pegmatite veins from Ciborro – Aldeia da Serra, Ossa–Morena Zone, Southern Portugal", Estudos Geológicos 19 (2009) 193-197.
58. [58] Habler G., Thöni M., Miller C., "Major and trace element chemistry and Sm–Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism", Chemical Geology 241 (2007) 4-22. [DOI:10.1016/j.chemgeo.2007.01.026]
59. [59] Massonne H.J., Chopin C., "P-T history of the Gran Paradiso (Western Alps) metagranites based on phengite geobarometry", Geological Society, London, Special Publications 43 (1989) 545-549. [DOI:10.1144/GSL.SP.1989.043.01.53]
60. [60] Le Goff E., Ballèvre M., "Geothermobarometry in albite-garnet orthogneisses: A case study from the Gran Paradiso nappe (Western Alps)", Lithos 25 (1990) 261-280. [DOI:10.1016/0024-4937(90)90026-W]
61. [61] Frey M., Hunziker J. C., O'Neil J. R., Schwander H. W., "Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data", Contributions to Mineralogy and Petrology 55 (1976) 147-179. [DOI:10.1007/BF00372224]
62. [62] Carswell D. A., Wilson R. N., Zhai M., "Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China", Lithos 52 (2000) 121-155. [DOI:10.1016/S0024-4937(99)00088-2]
63. [63] Proyer A., "The preservation of high-pressure rocks during exhumation: metagranites and metapelites", Lithos 70 (2003) 183-194. [DOI:10.1016/S0024-4937(03)00098-7]
64. [64] London D., "Experimental synthesis and stability of tourmaline: A historical overview", Canadian Mineralogist 49 (2011) 117-136. [DOI:10.3749/canmin.49.1.117]
65. [65] Spicer E. M., Steven G., Buick I. S., "The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia", Contributions to Mineralogy and Petrology 148 (2004) 160-179. [DOI:10.1007/s00410-004-0577-z]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb