Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 681-696 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khezerlou A, Amel N, moayed M, Jahangiri A, gari govayer M. Petrography, mineral chemistry and geochemistry of hornblenditic autholiths and hornblenditic xenoliths from volcanic alkaline rocks from North West of Marand (NW Iran). www.ijcm.ir. 2018; 25 (4) :681-696
URL: http://ijcm.ir/article-1-988-en.html
University of Tabriz
Abstract:   (598 Views)
Alkaline volcanic rocks of the northwest of Marand with Plio-Quaternary age are located in the northern part of Urumieh-Dokhtar Magmatic Arc. These rocks have a distinct enrichment in LILE and LREE and depletion in HFSE (such as Ta and Nb) and high Ba/Ta and Ba/Nb ratios, which are among the characteristics of subduction zones. The majority of hornblenditic autholiths and hornblenditic xenoliths are placed inside the trachy andesite rocks and the trachy basaltic andesite rocks. These autholiths and xenoliths, which have a cumulate texture, are classified into two groups based on the amount of plagioclase mineral. In Group 1, the amount of plagioclase is less than 10% and contains amphibole and biotite as the main minerals. Considering, contents of Cr and Ni, REE trend shape and the chemical composition of minerals, it seems that the origin of magma for group 1(hornblenditic autholiths) is the same as magma of host volcanic rocks. In Group 2, the amount of plagioclase is more than 20% and contains amphibole, plagioclase and biotite as the main minerals. The combination of minerals of group 2 are not similar to group 1. Considering, combination of minerals, REE trend shape and contents of REE and contents of incompatible trace elements, it seems that the magma of group 2 (hornblenditic xenoliths) is derived from the mantle metasomatized with less enriched than group 1.
Full-Text [PDF 131 kb]   (172 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/25 | Accepted: 2017/11/25 | Published: 2017/11/25

1. [1] Capedri S., VentureHi G., Salvioli M.E., Crawford A.J., Barbieri M., "Upper-mantle xenoliths and megacrysts in an alkali basalt from Tallante, south-eastern Spain", European journal of Mineralogy 1 (1989) 685-699. [DOI:10.1127/ejm/1/5/0685]
2. [2] Downes H., Upton B.G.l., Handisyde E., Thirlwall M.F., "Geochemistry of mafic and ultramafic xenoliths from Fidra (Southern Uplands, Scotland): implications for lithospheric processes in Permo-Carboniferous times", Lithos 58 (2001)105-124. [DOI:10.1016/S0024-4937(01)00052-4]
3. [3] Downes H., Kostoula T., lones P., Beard D., Thirlwall F., Bodinier L.L., "Geochemistry and Sr-Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite melilitite volcano, central southern Italy", Contrib. Mineral. PetroL 144 (2002) 78-93. [DOI:10.1007/s00410-002-0383-4]
4. [4] Carraro A., Visona D., "Mantle xenoliths in Triassic camptonite dykes of the Predazzo area (Dolomites, northern Italy); petrography, mineral chemistry and geothermobarometry", European journal of Mineralogy 15 (2003)103-115. [DOI:10.1127/0935-1221/2003/0015-0103]
5. [5] Orejana D., Villaseca C., Paterson B.A., "Geochemistry of Pyroxenitic and hornblenditic xenoliths in alkaline lamprophyres from the Spanish central system", lithos 86 (2006) 167-196. [DOI:10.1016/j.lithos.2005.03.014]
6. [6] Witt-Eickschen G., Kramm U., "Evidence for the multiple stage evolution of the subcontinental litho spheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenitel peridotite xenoliths", Contrib. Mineral. Petrol. 131 (1998) 258-272. [DOI:10.1007/s004100050392]
7. [7] Capedri S., Venturelli G., Salvioli M.E., Crawford A.J., Barbieri M., "Upper-mantle xenoliths and megacrysts in an alkali basalt from Tallante, south-eastern Spain", European journal of Mineralogy 1 (1989) 685- 699. [DOI:10.1127/ejm/1/5/0685]
8. [8] Frey F.A., Prinz M., "Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis", Earth Planet. Sci. Lett. 38 (1978) 129-176. [DOI:10.1016/0012-821X(78)90130-9]
9. [9] Irving A.l., "Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle", Am. 1. Sci. 280A (1980) 389-426.
10. [10] خضرلو ع.، امینی ص.، موید م.، "پترولوژی، ژئوشیمی و شیمی کانی‌های سنگ‌های پتاسیک و التراپتاسیک شمال غرب مرند"، مجله علمی دانشگاه خوارزمی، شماره3 (1387) ص 183-204.
11. [11] Ahmadzadeh G., Jahangiri A., Lentz D., Mojtahed, M., "Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran", Journal of Asian Earth Sciences 39 (2010) 37–50. [DOI:10.1016/j.jseaes.2010.02.008]
12. [12] Jahangiri A., "Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications", Journal of Asian Earth Sciences 30 (2007) 433–447. [DOI:10.1016/j.jseaes.2006.11.008]
13. [13] موذن م.، موید م.، حسین زاده ق.، "پتروگرافی و پترولوژی دایک لامپروفیری قخلار، غرب مرند"، مجموعه هفتمین همایش انجمن زمین شناسی ایران، دانشگاه اصفهان، (1382).
14. [14] Aghazadeh M., Prelević D., Badrzadeh Z., Braschi E., Bogaard P., Conticelli S., "Geochemistry Sr-Nd-Pb isotopes and geochronology of amphiboleand mica-bearing lamprophyres in northwestern Iran: implications for mantle wedge heterogeneity in a paleo-subduction zone", Lithos 216-217 (2015) 352-369. [DOI:10.1016/j.lithos.2015.01.001]
15. [15] نقشه‌های زمین شناسی 1:100000 مرند، جلفا، تسوج و قره ضیاءالدین.، انتشارات سازمان زمین شناسی کشور (1376).
16. [16] Pang K.N., Chung S.L., Zarrinkoub M.H., Lin Y.C., Lee H.Y., Lo C.H., Khatib M.M., "Iranian ultrapotassic volcanism at ~11 Ma signifies the initiation of postcollisional magmatism in the Arabia-Eurasia collision zone", Terra Nova 25 (2013) 405– 413. [DOI:10.1111/ter.12050]
17. [17] Speer J.A., "Mica in igneous rocks", In: Micas, Bailey, S. W. Mineralogy Society of American, Review in Mineralogy 13 (1984) 299-356.
18. [18] Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Geomateriala (Mineralogy), Comptes Rendus, Geosciences
19. [19] Hawthorne F. C., Oberti R., Harlow G. E., Maresch W. V., Martin R. F., Schumacher J. C., Welch M. D., "Nomenclature of the amphibole super group", American Mineralogist 97 (2012) 2031-2048. [DOI:10.2138/am.2012.4276]
20. [20] Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel. E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Guo Y., "Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names", Can Mineral 35 (1997) 219-246.
21. [21] Coogan L. A., Wilson R. N., Gillis K. M., MacLeod C. J., "Near solidus evolution of oceanic gabbros: insights from amphibole geochemistry", Geochim Cosmochim Acta 65 (2001) 4339–4357. [DOI:10.1016/S0016-7037(01)00714-1]
22. [22] Deer W.A., Howie R.A., Zussman J., "An introduction to the Rock forming minerals", Longman, London (1991)1-528.
23. [23] Harker B. R., "Igneous, sedimentary and metamorphic petrology", John Wiley and sons (1997) 529pp.
24. [24] Vynhal C.R., McSween H.Y., Jr., "Hornblende chemistry in southern Appalachian granitoids Implications for aluminum hornblende thermobarometry and magmatic epidote stability", Am. Mineral. 76 (1991) 176-188.
25. [25] Dehghani G.A., Makris T., "The gravity field and crustal structure of Iran", Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 168 (2–3) (1984) 215–229.
26. [26] Peccerillo A., Taylor S.R., "Geochemistry of Eocene calc-alkaline volcanic rocks in the Kastamonu area, Northern Turkey", Contrib. Mineral. Petrol. 58 (1976) 63–81. [DOI:10.1007/BF00384745]
27. [27] Le Bas M.J., Le Maître R.W., Streckeisen A., Zanettin B., "A chemical classification of volcanic rocks based on the total alkali-silica diagram", J. Petrol. 27 (1986) 745–750. [DOI:10.1093/petrology/27.3.745]
28. [28] Gertisser R., Keller J., "From basalt to dacite: Origin and evolution of the calc alkaline series of Salina, Aeolian Arc, Italy", Contribution to Mineralogy and Petrology 139 (2000) 607-626. [DOI:10.1007/s004100000159]
29. [29] Rudnick R. L., Gao S., "Composition of the continental crust. In: Rudnick, R.L. (Ed.) The Crust. In: H. D., Holland and K. K., Turekian (Eds.): Treatise on Geochemistry", Elsevier/Pergamon,Oxford 3 (2003) 1–64. [DOI:10.1016/B0-08-043751-6/03016-4]
30. [30] Fitton J.G., James D., Leeman W.P., "Basic magmatism associated with Late Cenozoic extension in the Western United States: compositional variations in space and time", Journal of Geophysical Research 96 (B8) (1991) 13693–13711. [DOI:10.1029/91JB00372]
31. [31] Sun S.S., McDonough W.F., "Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Oceanic Basalts", Geological Society Special Publication 42 (1989) 313–345. [DOI:10.1144/GSL.SP.1989.042.01.19]
32. [32] Boynton W.V., "Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry", Elsevier, New York 16 (1984) 63–114. [DOI:10.1016/B978-0-444-42148-7.50008-3]

Add your comments about this article : Your username or Email:

© 2018 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb