Volume 32, Issue 1 (4-2024)                   www.ijcm.ir 2024, 32(1): 145-160 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghani Dashtabi S, mahmoody S, Rahgoshay M. Physicochemical conditions of granitoids amphibole crystallization in Hararan (part of Lalehzar granitoid complex in Baft city, Kerman Province). www.ijcm.ir 2024; 32 (1) :145-160
URL: http://ijcm.ir/article-1-1845-en.html
1- Faculty of Earth Sciences, Department of Petrology, Shahid Beheshti university
2- Faculty of Earth Sciences, Department of Petrology, kharazmi university
Abstract:   (460 Views)
The Laleh-Zar granitoid complex is one of the most important magmatic phases of the Urumieh-Dokhtar belt and is located in the southeast of this belt in Kerman Province, which has a combination of granite and gabbrodiorite. Parts of this vast complex is exposed in the southern part of Hararan region. Based on petrographic studies, these igneous rocks are granodiorite, diorite, and dacite with quartz, plagioclase, amphibole, biotite, pyroxene, and opac minerals. The secondary minerals of chlorite, calcite, epidote and sericite are also present in these igneous units. The results of mineral analysis, using microprobe method, showed that amphiboles are calcite and hornblende. these amphiboles are igneous and belong to the calc-alkaline magmatic series and are of S type (subduction Amphiboles), which are formed in the subductions environment. The pressure and temperature during the formation of these amphiboles were calculated by different methods, therefore the temperature was 650 to 798 degrees Celsius and the pressure was 0.9 to 2.3 kbar. In addition, these amphiboles have high oxygen fugacity and were created at the depths of 9 to 14 kilometers of the earth. Based on the relationships between different elements in these amphiboles, the conducted studies showed that tschermakite and adenitic successions occurred in these amphiboles, but glaucophane, riebeckite and richterite successions did not occur in these amphiboles.
Full-Text [PDF 2096 kb]   (169 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Holland T., Blundy 'Non-ideal interactions in calcific amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to mineralogy and petrology', 1994, 116, pp. 433-447 [DOI:10.1007/BF00310910]
2. [2] Ridolfi F., Renzulli A., 'Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa', Contributions to Mineralogy and Petrology, 2012, 163, (5), pp. 877-895 [DOI:10.1007/s00410-011-0704-6]
3. [3] Smith D.J., 'Clinopyroxene precursors to amphibole sponge in arc crust', Nature Communications, 2014, 5, (1), pp. 1-6 [DOI:10.1038/ncomms5329]
4. [4] Ablay G., Carroll M., Palmer M., Martí J., Sparks R., 'Basanite-phonolite lineages of the Teide-Pico Viejo volcanic complex, Tenerife, Canary Islands', Journal of Petrology, 1998, 39, (5), pp. 905-936 [DOI:10.1093/petrology/39.5.905]
5. [5] Renzulli A., Santi P., 'Two-stage fractionation history of the alkali basalt-trachyte series of Sete Cidades volcano (São Miguel Island, Azores)', European Journal of Mineralogy, 2000, 12, (2), pp. 469-494. [DOI:10.1127/0935-1221/2000/0012-0469]
6. [6] Puerini M., 'Origin and evolution of the back arc magmatism of Ecuador (Northern volcanic zone, Andes): El Reventador and Sumaco active volcanoes', Plinius, 2009, 35, pp. 164-172
7. [7] Faccenna C., Becker T.W., Lallemand S., Lagabrielle Y., Funiciello F., Piromallo C., 'Subduction-triggered magmatic pulses: A new class of plumes?', Earth and Planetary Science Letters, 2010, 299, (1-2), pp. 54-68 [DOI:10.1016/j.epsl.2010.08.012]
8. [8] Schiano P., Clocchiatti R., Ottolini L., Busà T., 'correction: Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source', Nature, 2002, 416, (6881), pp. 660-660 [DOI:10.1038/416660a]
9. [9] Cashman K., Blundy J., 'Petrological cannibalism: the chemical and textural consequences of incremental magma body growth', Contributions to Mineralogy and Petrology, 2013, 166, 3, pp. 703-729 [DOI:10.1007/s00410-013-0895-0]
10. [10] Putirka K., 'Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes', American Mineralogist, 2016, 101, (4), pp. 841-858 [DOI:10.2138/am-2016-5506]
11. [11] Pichavant M., Martel C., Bourdier J.L., Scaillet B., 'Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc)', Journal of Geophysical Research: Solid Earth, 2002, 107, (B5), pp. ECV 1-1-ECV 1-28 [DOI:10.1029/2001JB000315]
12. [12] Ridolfi F., Renzulli A., Cerredo M., Oberti R., Boiocchi M., Bellatreccia F., Della Ventura G., Menichetti M., Tassone A., 'Amphibole megacrysts of the cerro jeu-jepén pluton: 2-10 new constraints on magma source and evolution (fuegian andes, argentina'2010
13. [13] Luckett R., Baptie B., Ottemoller L., Thompson G., 'Seismic monitoring of the Soufrière Hills volcano, Montserrat', Seismological Research Letters, 2007, 78, (2), pp. 192-200 [DOI:10.1785/gssrl.78.2.192]
14. [14] Ozerov A.Y., 'The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions', Journal of Volcanology and Geothermal Research, 2000, 95, (1-4), pp. 65-79 [DOI:10.1016/S0377-0273(99)00118-3]
15. [15] Hammarstrom J.M., Zen E.a., 'Aluminum in hornblende: an empirical igneous geobarometer', American mineralogist, 1986, 71, (11-12), pp. 1297-1313
16. [16] Schmidt M.W., 'Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer', Contributions to mineralogy and petrology,2, 110, 1992 pp. 304-310 [DOI:10.1007/BF00310745]
17. [17] Hollister L.S., Grissom G., Peters E., Stowell H., Sisson V., 'Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons', American Mineralogist, 1987, 72, 3-4, pp. 231-239
18. [18] Johnson M.C., Rutherford M.J., 'Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks', Geology, 1989, 17, (9), pp. 837-841 https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 [DOI:10.1130/0091-7613(1989)0172.3.CO;2]
19. [19] Ridolfi F., Renzulli A., Puerini M., 'Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes', Contributions to Mineralogy and Petrology, 2010, 160, (1), pp. 45-66 [DOI:10.1007/s00410-009-0465-7]
20. [20] Anderson J., Smith D., 'The Effectsof Temperatureand F (O2) ontheAl-in-Hornblende Barometer', American Mineralogist, 1995, 80, (5-6), pp. 549-559 [DOI:10.2138/am-1995-5-614]
21. [21] Anderson J.L., 'Status of thermobarometry in granitic batholiths', Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, (1-2), pp. 125-138 [DOI:10.1017/S0263593300006544]
22. [22] Ernst W., Liu J., 'Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer', American mineralogist, 1998, 83, (9-10), pp. 952-969 [DOI:10.2138/am-1998-9-1004]
23. [23] Stein E., Dietl C., 'Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald', Mineralogy and petrology, 2001, 72, (1), pp. 185-207 [DOI:10.1007/s007100170033]
24. [24] Putirka K.D., 'Thermometers and barometers for volcanic systems', Reviews in mineralogy and geochemistry, 2008, 69, (1), pp. 61-120 [DOI:10.2138/rmg.2008.69.3]
25. [25] Wones D.R., 'Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks', American Mineralogist, 1989, 74, (7-8), pp. 744-749
26. [26] Helmy H., Ahmed A., El Mahallawi M., Ali S., 'Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications', Journal of African Earth Sciences, 2004, 38, (3), pp. 255-268 [DOI:10.1016/j.jafrearsci.2004.01.002]
27. [27] Chekani Moghadam M., Tahmasbi Z., Ahmadi-khalaji A., 'Petrogenesis of adakitic and calc-alkaline granitoids in Rabor-Lalehzar region, SE of Kerman: Constraints from geochemical and Sr-Nd isotopes results', Scientific Quarterly Journal of Geosciences, 2018, 27, (108), pp. 13-26
28. [28] Sepidbar F., Karsli O., Palin R.M., Casetta F., 'Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran', Lithos, 202, 400, 106401 [DOI:10.1016/j.lithos.2021.106401]
29. [29] Hosseini M.R., Hassanzadeh J., Alirezaei S., Sun W., Li C.-Y., 'Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology', Lithos, 2017, 284, pp296-309. [DOI:10.1016/j.lithos.2017.03.012]
30. [30] Hassanzadeh J., Axen G., Guest B., Stockli D.F., Ghazi A.M., 'The Alborz and NW Urumieh-Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc', Proc. Geol. Soc. Am. Abstr. Programs2004 pp. Pages
31. [31] Montazami A., Amiri A., Kianian M., 'Investigation of geology, mineralogy and genesis of Hararan copper deposit', Advanced Applied Geology, 2022, 12, (1), pp. 165-176
32. [32] Dimitrijevic M.D., Djokovic I., 'Geological Map of Kerman Region', (Institute for geological and mining exploration and investigation of nuclear …, 1973.
33. [33] Dimitrijevic M., Dimitrijevic M., Djordjevic M., Djokovic I., 'Geological Survey of Iran, 1: 100,000 Series: Sheet 7250', in Editor (Ed.)^(Eds.): 'Book Geological Survey of Iran, 1: 100,000 Series: Sheet 7250' (Anar, 1971, edn.), pp.
34. [34] Atapour H., 'Geochemical Evolution and Metallogeny of Potassic Igneous Rocks of the Volcano-plutonic Belt of Kerman Province with Particular Reference to Special.
35. [35] Elements, Shahid Bahonar of Kerman, 2007
36. [36] Hassanzadeh J., Axen G., Guest B., Stockli D.F., Ghazi A.M., 'The Alborz and NW Urumieh-Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc', in Editor (Ed.)^(Eds.): 'Book The Alborz and NW Urumieh-Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc' (2004, edn.), pp. 434
37. [37] Asadi S., Moore F., Zarasvandi A., Khosrojerdi M., 'First report on the occurrence of CO-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting', Geologos, 2013, 19, (4), pp. 301-320 [DOI:10.2478/logos-2013-0019]
38. [38] Hassanzadeh J., 'Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Kerman Province)', 1994
39. [39] Zhang S., Zhao Y., Song B., 'Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: implications for the tectonic evolution of the northern margin of North China block", Mineralogy and Petrology, 2006, 87, (1), pp. 123-141 [DOI:10.1007/s00710-005-0116-2]
40. [40] Mortazavi M.S.Z., Jalal Ghafari Fakher, Morteza, 'Determination of mineral chemistry, temperature-pressure measurement and depth of granitoid magma emplacement in Nouchon, Rafsanjan, Kerman region", in Editor (Ed.)^(Eds.): 'Book Determination of mineral chemistry, temperature-pressure measurement and depth of granitoid magma emplacement in Nouchon, Rafsanjan, Kerman region"' (2011, edn.), pp.
41. [41] Moody J.B., Meyer D., Jenkins J.E., 'Experimental characterization of the greenschist/amphibolite boundary in mafic systems', American Journal of Science, 1983, 283, (1), pp. 48-92 [DOI:10.2475/ajs.283.1.48]
42. [42] Thomas W., 'The aluminium content of hornblende in calc-alkaline granitic rocks: A mineralogic barometer calibrated experimentally to 12 kbars', Fluid-mineral interactions: a tribute to HP Eugster, 1990, pp. 59-63
43. [43] Poole I., Ataabadi M.M., 'Conifer woods of the middle Jurassic Hojedk formation (Kerman basin) Central Iran', IAWA journal, 2005, 26, (4), pp. 489-505. [DOI:10.1163/22941932-90000130]
44. [44] Leake B.E., Woolley A.R., Arps C.E., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., 'Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names', Mineralogical magazine, 1997, 61, (405), pp. 295-310 [DOI:10.1180/minmag.1997.061.405.13]
45. [45] Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C., Welch M.D., 'Nomenclature of the amphibole supergroup', American Mineralogist, 2012, 97, (11-12), pp. 2031-2048 [DOI:10.2138/am.2012.4276]
46. [46] Sial A., Ferreira V., Fallick A., Cruz M.J.M., 'Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil', Journal of South American Earth Sciences, 1998, 11, (5), pp. 457-471 [DOI:10.1016/S0895-9811(98)00034-0]
47. [47] Agemar T., Wörner G., Heumann A., 'Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water?', Contributions to Mineralogy and Petrology, 1999, 136, (4), pp. 331-344 [DOI:10.1007/s004100050542]
48. [48] Spear F.S., 'An experimental study of hornblende stability and compositional variability in amphibolite', Amer. Jour. Sci., 1981, 281, pp. 697-734 [DOI:10.2475/ajs.281.6.697]
49. [49] Clemens J.D., Wall V.J., 'Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town Volcanics', Contributions to Mineralogy and Petrology, 1984, 88, (4), pp. 354-371 [DOI:10.1007/BF00376761]
50. [50] Molina J.F., Scarrow J.H., Montero P.G., Bea F., 'High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia', Contributions to Mineralogy and Petrology, 2009, 158, pp. 69-98 [DOI:10.1007/s00410-008-0371-4]
51. [51] Droop G., 'A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria', Mineralogical magazine, 1987, 51, (361), pp. 431-435. [DOI:10.1180/minmag.1987.051.361.10]
52. [52] Jiang C., An S., 'On chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significance', Journal of Mineralogy and Petrology, 1984, 3, (1), pp. 1-9
53. [53] Xie Y., Zhang Y., 'Peculiarities and genetic significance of hornblende from granite in the Hengduansan region', Acta Mineral Sin, 1990, 10, (1), pp. 35-45
54. [54] Coltorti M., Bonadiman C., Faccini B., Grégoire M., O'Reilly S.Y., Powell W., 'Amphiboles from suprasubduction and intraplate lithospheric mantle', Lithos, 2007, 99, (1-2), pp. 68-84. [DOI:10.1016/j.lithos.2007.05.009]
55. [55] Leake B.E., Woolley A.R., Birch W.D., Burke E.A., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H.J., Krivovichev V.G., Schumacher J.C., 'Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's 1997 recommendations', The Canadian Mineralogist, 2003, 41, (6), pp. 1355-1362 [DOI:10.2113/gscanmin.41.6.1355]
56. [56] Lisboa V.A.C., Conceição H., Rosa M.L.S., Marques G.T., Lamarão C.N., Lima A.L.R., 'Amphibole crystallization conditions as record of interaction between ultrapotassic enclaves and monzonitic magmas in the Glória Norte Stock, South of Borborema Province', Brazilian Journal of Geology, 2020, 50 [DOI:10.1590/2317-4889202020190101]
57. [57] Humphreys M.C., Kearns S.L., Blundy J.D., 'SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis', American Mineralogist, 2006, 91, (4), pp. 667-679 [DOI:10.2138/am.2006.1936]
58. [58] Ridolfi F., Renzulli A., Perugini D., Cesare B., Braga R., Del Moro S., 'Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling', Lithos, 2016, 244, pp. 233-249 [DOI:10.1016/j.lithos.2015.11.002]
59. [59] Scaillet B., Evans B.W., 'The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-f O2-f H2O conditions of the dacite magma', Journal of Petrology, 1999, 40, (3), pp. 381-411 [DOI:10.1093/petroj/40.3.381]
60. [60] Leidig M., Zandt G., 'Modeling of highly anisotropic crust and application to the Altiplano‐Puna volcanic complex of the central Andes', Journal of Geophysical Research: Solid Earth, 2003, 108, (B1), pp. ESE 5-1-ESE 5-1. [DOI:10.1029/2001JB000649]
61. [61] Andrews B.J., Gardner J.E., Housh T.B., 'Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts', Journal of Volcanology and Geothermal Research, 2008, 4, 175pp. 415-426 [DOI:10.1016/j.jvolgeores.2008.02.017]
62. [62] Li W., Cheng Y., Yang Z., 'Geo‐fO2: Integrated software for analysis of magmatic oxygen fugacity', Geochemistry, Geophysics, Geosystems, 2019, 20, (5), pp. 2542-2555 [DOI:10.1029/2019GC008273]
63. [63] Kiss B., Harangi S., Ntaflos T., Mason P.R., Pál-Molnár E., 'Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians)', Contributions to Mineralogy and Petrology, 2014, 167, pp. 1-27. [DOI:10.1007/s00410-014-0986-6]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb