Volume 30, Issue 4 (12-2022)                   www.ijcm.ir 2022, 30(4): 10-10 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdani M. Investigating the mineral chemistry of amphibole and petrogenesis of the appinite-granite rocks from SW Naghadeh-NW Iran. www.ijcm.ir 2022; 30 (4) :10-10
URL: http://ijcm.ir/article-1-1817-en.html
Abstract:   (880 Views)
The Zagros orogeny occurred with the opening of Neotethys, subduction and closure of ocean between Arabian and central Iranian microplate. The Sanandaj-Sirjan Zone is a metamorphic–magmatic belt, associated with the Zagros Orogeny as parts of the Alpine. The dominant plutonic rocks in the Sanandaj-Sirjan zone are considered to be a response to the subduction of the Neotethys. This paper discusses the mineral chemistry of amphibole and feldspar in the appinitic and granitic rocks which are exposed in SW of Nagadeh area. The appinite rocks consist of a group of coeval plutonic rocks, ranging from ultramafic to felsic in composition in which hornblende and feldspar are the dominant minerals, and typically occurs both as large prismatic phenocrysts and in the finer grained matrix. The composition of minerals in the appinitic and granitic rocks are similar,  and the composition of amphibole is magnesiohornblende and feldspars is orthoclase. Both magmas have calc alkalic characteristics with arc continental tectonic setting. They have derived from the crustal-mantle mixed sources and high magmatic oxygen fugacity. The appinitic rocks and granites have not coeval. Thermobarometric estimates using amphibole data show that the appinitic-granitic magmas crystallized in two storage zones at pressures of 3-5 kbar (shallow crust) and 1-3 kbar (upper crust). The appinitic rocks were derived from partial melting of lithospheric mantle that had been metasomatized by slab-derived fluids, in the shallow crust during Neo-Tethyan slab breakoff. Generally, it is difficult for the hydrous basaltic magmas to ascend through the continental crust, therefore the underplating of the crust by these magmas supplied sufficient heat and water to facilitate the partial melting of the overlying crust to produce the granites associated with the appinite.
Full-Text [PDF 2918 kb]   (283 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Zhao S.W., Yang C., Lai S.C., Pei X.Z., Li Z.C., and Zhu R.Z., "Multistage Fractional Crystallization in the Continental Arc Magmatic System: Constraints from the Appinites in Tengchong Block, Southeastern Extension of Tibet ˮ, GeoScienceWorld, (2021) 18. https://doi.org/10.2113/2021/3367816 [DOI:10.2113/2021/3367816.]
2. [2] Atherton M.P., and Ghani A.A. "Slab breakoff: a model for Caledonian, Late Granite yncollisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Irelandˮ, Lithos. 62 (2002), 65-85. [DOI:10.1016/S0024-4937(02)00111-1]
3. [3] Ye H.M., Li X.H., Li Z.X. and Zhang C.L., "Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic beltˮ, Gondwana Research 13(2008), 126-138. [DOI:10.1016/j.gr.2007.08.005]
4. [4] Zhang X.H., Xue F.H., Yuan L.L., Ma Y.G. and Wilde S.A., "Late Permian appinite-granite complex from northwestern Liaoning, North China Craton: Petrogenesis and tectonic implicationsˮ, Lithos 155 (2012), 201-217. [DOI:10.1016/j.lithos.2012.09.002]
5. [5] Murphy J.B. and Hynes A.J., Tectonic control on the origin and orientation of igneous layering: an example from the Greendale Complex., Nova Scotiaˮ, Geology 18(1990), 403-406. https://doi.org/10.1130/0091-7613(1990)018<0403:TCOTOA>2.3.CO;2 [DOI:10.1130/0091-7613(1990)0182.3.CO;2]
6. [6] Murphy J.B., Appinite suites: "A record of the role of water in the genesis, transport, mplacement and crystallization of magmaˮ, Earth Science Reviews, 119 (2013), 35-59. [DOI:10.1016/j.earscirev.2013.02.002]
7. [7] Huang F., Zhang Z., Xu J., Li X., Zeng Y., Wang B., Li X., Xu R., Fan Z., Tian Y., "Fluid flux in the lithosphere beneath southern Tibet during Neo-Tethyan slab breakoff: Evidence from an appinite-granite suiteˮ, LITHOS, (2019). [DOI:10.1016/j.lithos.2019.07.004]
8. [8] Bailey E.B., Maufe H.B., "The geology of Ben Nevis and Glen Coe and the surrounding country Memoirsˮ, Geological Society of Scotland. 53 (1916) 1-247.
9. [9] Murphy J.B., "Appinite suites and their genetic relationship to coeval voluminous granitoid
10. batholithsˮ, International Geology Review, (2019) doi: 10.1080/00206814.2019.1630859. [DOI:10.1080/00206814.2019.1630859]
11. [10] Miyashiro A., "Volcanic rock series in island arcs and active continental marginsˮ, American Journal of Science. 274 (1974) 321-355. [DOI:10.2475/ajs.274.4.321]
12. [11] Pearce J.A., "A user's guide to basaltic discrimination diagrams, in Wyman, D.A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Explorationˮ, Geological Association of Canada Short Course Notes. 12 (1996) 79-113.
13. [12] Fowler M.B., Henney P.J., Darbyshire D.P.F., Greenwood P.B., "Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherlandˮ, Journal of the Geological Society. 158 (2001) 521-553. [DOI:10.1144/jgs.158.3.521]
14. [13] Atherton M.P., Ghani A.A., "Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegalˮ, Ireland. Lithos. 62 (2002) 65-85. [DOI:10.1016/S0024-4937(02)00111-1]
15. [14] Castro A., Corretge L.G., De la Rosa J.D., Fernandez C., Lopez S., Garcia-Moreno O., Chacon H., "The appinite-migmatite complex of Sanabria, NW Iberian massif, Spainˮ, Journal of Petrology. 44 (2003) 1309-1344. [DOI:10.1093/petrology/44.7.1309]
16. [15] Neuendorf K.K.E., Mehl Jr., J.P., Jackson J.A. (Eds.) "Glossary of Geologyˮ, 5th ed. American Geological Institute, (2005).10.1017/S0016756807004141.
17. [16] Morphy J.B., "Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magmaˮ, Earth-Science Reviews. 119 (2013) 35-59. [DOI:10.1016/j.earscirev.2013.02.002]
18. [17] Yoder H.S., Tilley C.E., "Origin of basaltic magma: an experimental study of natural and synthetic rock systemsˮ, Journal of Petrology. 3 (1962) 342-532. [DOI:10.1093/petrology/3.3.342]
19. [18] Moore G., Carmichael I.S.E., "The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growthˮ, Contributions to Mineralogy and Petrology. 130 (1998) 304-319. [DOI:10.1007/s004100050367]
20. [19] Müntener O., Kelemen P.B., Grove T.L., "The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental studyˮ, Contributions to Mineralogy and Petrology. 141 (2001) 643-658. [DOI:10.1007/s004100100266]
21. [20] Pitcher W.S., "The Nature and Origin of Granite, 2nd ed. Chapman and Hall, Londonˮ, (1997) 395. [DOI:10.1007/978-94-011-5832-9]
22. [21] Hamidullah S., "Petrography and mineral chemistry as indicators of variations of crystallization conditions in the Loch Lomond and Appin appinite suites, western Scotlandˮ, Sciencedirect. 118 (2007) 101-115. [DOI:10.1016/S0016-7878(07)80051-4]
23. [22] Hall A., "The chemistry of appinitic rocks associated with the Ardara Pluton, Donegal, Irelandˮ, Contributions to Mineralogy and Petrology. 16(1967) 156-171. [DOI:10.1007/BF00372795]
24. [23] French W.J., "Geochemistry of the appinite suiteˮ, Geological Society, London, Special Publication. 8 (1979) 699-704. [DOI:10.1144/GSL.SP.1979.008.01.76]
25. [24] Pitcher W.S., Berger A.R., "The Appinite suite: basic rocks genetically associated with granite. The Geology of Donegal. A Study of Granite Emplacement and Unroofing, Regional Geology Seriesˮ, John Wiley and Sons Ltd, Chichester, Sussex. (1972) 143-168.
26. [25] Fowler M.B., Henney P.J., Darbyshire D.P.F. and Greenwood, P.B., "Petrogenesis of high Ba-Sr granites the Rogart pluton, Sutherlandˮ, Journal of the Geological Society. 158 (2001) 521-534. [DOI:10.1144/jgs.158.3.521]
27. [26] Fowler M.B., Kocks H., Darbyshire D.P.F., "Greenwood P.B., Petrogenesis of high Ba-Sr
28. plutons from the Northern Highlands Terrane of the British Caledonian Provinceˮ, Lithos. 105
29. (2008) 129-148.
30. [27] Collins W.J., Huang H., and Jiang X., "Water-fluxed crustal melting produces Cordilleran batholithsˮ, Geology. 44 (2016) 143-146. [DOI:10.1130/G37398.1]
31. [28] Huang F., Xu J.F., Zeng Y.C., Chen J.L., Wang B.D., Yu H.X., Chen L., Huang W.L. and Tan R.Y., "Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crustˮ, Geochemistry Geophysics Geosystems. 18 (2017) 4074-4095. [DOI:10.1002/2017GC007039]
32. [29] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer
33. B., and Wortel R., "Zagros orogeny: a subduction-dominated processˮ, Geological Magazine, 148
34. (2011) 692-725.
35. [30] Agard P., Omrani J., Jolivet L., and Mouthereau F., "Convergence history across Zagros (Iran): constraints from collisional and earlier deformationˮ, International Journal of Earth Sciences, 94 (2005) 401-419. [DOI:10.1007/s00531-005-0481-4]
36. [31] Rolland Y., "Caucasus collisional history: review of data from East Anatolia to West Iranˮ, Gondwana Research. 49 (2017) 130-146. [DOI:10.1016/j.gr.2017.05.005]
37. [32] Dercourt J., Zonenshain L.P., Ricou L.E., Kazmin V.G., Le Pichon X., Knipper A.L.,
38. Grandjacquet C., Sbortshikov I.M., Geyssant J., Lepvrier C., Pechersky D.H., Boulin J., Sibuet
39. J.C., Savostin L.A., Sorokhtin O., Westphal M., Bazhenov M.L., Lauer J.P., and Biju-Duval B.,
40. "Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIASˮ,
41. Tectonophysics, 123 (1986) 241-315. [DOI:10.1016/0040-1951(86)90199-X]
42. [33] Mazhari S.A., Bea F., Amini S., Ghalamghash J., Molina J.F., Montero P., Scarrow J.H., and
43. Williams I.S., "The Eocene bimodal Piranshahr massif of the Sanandaj-Sirjan Zone, NW Iran: a
44. marker of the end of the collision in the Zagros orogenˮ, Journal of Geological Society,
45. 166(2015)., 53-69.
46. [34] Zhang Z., Xiao W., Ji W., Majidifard M.R., Rezaeian M., Talebian M., Xiang Z., Chen L.,
47. Wan B., Ao S., and Esmaeili R., "Geochemistry, zircon U-Pb and Hf isotope for granitoids, NW
48. Sanandaj-Sirjan zone, Iran: Implications for Mesozoic-Cenozoic episodic magmatism during Neo-
49. Tethyan lithospheric subductionˮ, Gondwana Research. 19 (2018) 1-18.
50. [35] Sepahi G., "A Petrology of Alvand pluton assemblage, Ph.D. thesisˮ, Tarbiat Moallem University. (in Persian), (1999) 302.
51. [36] Ahmadi Kh., Esmaeily D., Valizadeh M.V., Rahimpour-Bonab H., "Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zoneˮ, Western Iran. Journal Asian Earth Science. 29 (2007) 859-877. [DOI:10.1016/j.jseaes.2006.06.005]
52. [37] Ghalamghash J., Nédélec A., Bellon H., Vousoughi Abedini M., Bouchez J.L., "The Urumieh plutonic complex (MW Iran): A record of the geodynamic evolution of the Sanandaj-Sirjan zone during Cretaceous times-Part I: Petrogenesis and K/Ar datingˮ, Journal Asian Earth Science. 35 (2009) 401-415. [DOI:10.1016/j.jseaes.2009.02.002]
53. [38] Azizi H., Hadad S., Stern R.J. and Asahara Y., "Age, geochemistry, and emplacement of the ~40-Ma Baneh granite-appinite complex in a transpressional tectonic regime, Zagros suture zone northwest Iranˮ, International Geology Review, 2018, DOI: 10.1080/00206814.2017.1422394. [DOI:10.1080/00206814.2017.1422394]
54. [39] Mazhari S.A., Amini S., Ghalamghash J. and Bea F., "Petrogenesis of granitic unit of Naqadeh complex, Sanandaj-Sirjan Zone, NW Iranˮ, Arabian Journal Geoscience. 4 (2011) 59-67. [DOI:10.1007/s12517-009-0077-6]
55. [40] Stöcklin J., "Structures history and tectonic of Iran: A reviewˮ, American Association of Petroleum Geologists Bulletin. 52 (1968) 1229-1258.
56. [41] Hajialioghli R., & Moazzen M., "Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area, NW Iranˮ, Journal of Geodynamics. 18 (2014) 41-55. [DOI:10.1016/j.jog.2014.06.003]
57. [42] Khodabandeh, A.A., "Explanatory text of Naghadeh, Geological quadrangle map, 1:100000ˮ, Geological survey of Iran. (2004), Tehran (in Persian).
58. [43] Mohajjel M., Rasouli A., "Structural evidence for superposition of transtension on
59. transpression in the Zagros collision zone: Main Recent Fault, Piranshahr area, NW Iranˮ,
60. Journal of Structural Geology. 62 (2014) 65-79. [DOI:10.1016/j.jsg.2014.01.006]
61. [44] Yazdani M., Study of field occurrence and petrology of igneous rocks related to ophiolite
62. complex in Northwest Piranshahr-NW Iranˮ, University of Tabriz, PhD Thesis, (2014), (in
63. Persian).
64. [45] Leak B.E.; Wooley A.R.; Arps C.E.S.; Birch W.D.; Gilbert M.C.; Grice J.D.; Hawthorne F.C.; Kato A.; Kisch H.J.; Krivovichev V.G., "Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Namesˮ, Can. Mineral. 35 (1997) 219-233.
65. [46] Sial A.N., Ferreira V.P., Fallick A.E., Cruz M.J.M., "Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil", Journal of South American Earth Sciences. 1 (1998) 457-471. [DOI:10.1016/S0895-9811(98)00034-0]
66. [47] Hawthorne F.C., Oberti R., Harlow G.E., Maresch W.V., Martin R.F., Schumacher J.C.,"Nomenclature of the amphibole supergroup", American Mineralogist. 97 (2012) 2031-2048. [DOI:10.2138/am.2012.4276]
67. [48] Agemar T., Wörner G., Heumann A., "Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water?", Contributions to Mineralogy and Petrology. 136 (1999) 331-344. [DOI:10.1007/s004100050542]
68. [49] Chivas A.R., "Geochemical evidence for magmatic fluids in porphyry copper mineralization", Contributions to Mineralogy and Petrology. 78 (1982) 389-403. [DOI:10.1007/BF00375201]
69. [50] Scarrow J.H., Molina J.F., Bea F., Montero P., "Within-plate calc-alkaline rocks: insights from alkaline mafic magma-peraluminous crustal melt hybrid appinites of the Central Iberian Variscan continental collisionˮ, Lithos. 110 (2009) 50-54. [DOI:10.1016/j.lithos.2008.12.007]
70. [51] Coltorti M., Bondaiman C., Faccini B., Grégoire M., O'Reilly S. Y., Powell W., "Amphiboles from suprasubduction and intraplate lithospheric mantleˮ, Lithos. 99 (2007) 68-84. [DOI:10.1016/j.lithos.2007.05.009]
71. [52] Zhang S.H., Zhao Y. and Song B., "Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: implications for the tectonic evolution of the northern margin of North China blockˮ, Mineralogy and Petrology. 87 (2006) 123-141. [DOI:10.1007/s00710-005-0116-2]
72. [53] Blundy J.D., Holland TJ., "Calcic amphibole equilibria and a new amphibole-plagioclase geothermometerˮ, Contributions to Mineralogy and Petrology. 104 (1990) 208-224. [DOI:10.1007/BF00306444]
73. [54] Jiang C., An S., "On chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significanceˮ, Journal of Mineralogy and Petrology. 3 (1984) 1-9.
74. [55] Schmidt M.W., "Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometerˮ, Contributions to Mineralogy and Petrology. 110 (1992) 304-10. [DOI:10.1007/BF00310745]
75. [56] Helz R.T., "Phase relations of basalts in their melting ranges at P H2O=5 kb. Part II. Melt
76. compositions", Journal of Petrology. 17 (1976) 139-193. [DOI:10.1093/petrology/17.2.139]
77. [57] Hammarstron J.M., Zen E., "Aluminium in hornblende: an empiricaligneous geobarometerˮ, American Mineralogy. 71 (1986) 1297-1313.
78. [58] Anderson J.L., Smith DR., "The effects of temperature and fO₂ on the Al-in-hornblende
79. barometerˮ, American Mineralogist. 80 (1995) 549-559. [DOI:10.2138/am-1995-5-614]
80. [59] Helz R.T., "Phase relations of basalts in their melting range at PH2O= 5 kb as a function of
81. oxygen fugacity: part I. Mafic phasesˮ, Journal of Petrology. 14 (1973) 249-302. [DOI:10.1093/petrology/14.2.249]
82. [60] Tulloch A.J., Challis G.A., "Emplacement depths of Paleozoic-Mesozoic plutons from western New Zealand estimated by hornblende-AI geobarometryˮ, New Zealand Journal of Geology and Geophysics. 43 (2000) 555-567. [DOI:10.1080/00288306.2000.9514908]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb