Volume 29, Issue 4 (12-2021)                   www.ijcm.ir 2021, 29(4): 15-15 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadpour Arzefooni, Izadifard, Ghazi, Arab Pour. Study of Structural, Optical and Electrical Properties of MA(FA)SnICl2 Perovskite Thin Films Synthesized by One-Step Spin Coating. www.ijcm.ir 2021; 29 (4) :15-15
URL: http://ijcm.ir/article-1-1691-en.html
Abstract:   (753 Views)
In this research, MASnICl2 and FASnICl2 thin layers were synthesized by the one-step spin coating method, and then their structural, optical and electrical properties were investigated. The study of these samples (structural properties) showed that the layers have a tetragonal structure (α- phase perovskite), and with the change of organic cation, the crystallinity and morphology of the layers significantly change. These changes also have influences in the optical and electrical properties of the samples. The perovskite layers have a high absorption coefficient (of the order of 105 cm-1) in the visible range. The bandgap for the FASnICl2 layer was 1.48 eV and for the MASnICl2 layer was 1.54 eV. A strong peak close to bandgap was observed in the room temperature PL of the layers, which was remarkably more intense for the FASnICl2 sample. This study showed that the FASnICl2 layers have better crystallinity, lower electrical resistance, higher optical sensitivity and acceptable optical response comparing the MASnICl2 layers, and therefore, they can be suitable options for use as an adsorbent layer in perovskite solar cells.
Full-Text [PDF 1365 kb]   (221 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Carmichael I.S.E., "The redox states of basic and silicic magmas: a reflection of their source regions?" Contrib. Mineral. Petrology 106 (1991), 129-141. [DOI:10.1007/BF00306429]
2. [2] Frost B. R., "Introduction to oxygen fugacity and its petrologic importance. In D. H. Lindsley (Ed.), Oxide Minerals: Petrologic and Magnetic Significance". Reviews in Mineralogy 25 (1991), pp. 1-9. Washington, DC: Mineral. Soc. Am. [DOI:10.1515/9781501508684-004]
3. [3] Brounce M. N., Kelley K. A., Cottrell E., "Variations in Fe 3+/∑Fe of Mariana Arc basalts and mantle wedge fO2". Journal of Petrology 55 (2014), 2513-2536. [DOI:10.1093/petrology/egu065]
4. [4] Canil D., "Vanadium in peridotites, mantle redox and tectonic environments: Archean to present". Earth and Planetary Science Letters, 195 (2002), 75-90. https://doi.org/10.1016/S0012-821X(01)00582-9 [DOI:10.1016/S0012‐821X(01)00582‐9]
5. [5] Evans K. A., Tomkins A. G., "The relationship between subduction zone redox budget and arc magma fertility". Earth and Planetary Science Letters, 308 (2011), 401-409. [DOI:10.1016/j.epsl.2011.06.009]
6. [6] Jugo P.J., "Sulfur content at sulfide saturation in oxidized magmas, Geology 37 (2009), p. 415-418. Doi: [DOI:10.1130/G25527A.1]
7. [7] Richards J. P., "The oxidation state, and sulfur and Cu contents of arc magmas:implications for metallogeny". Lithos 233 (2015),27-45. [DOI:10.1016/j.lithos.2014.12.011]
8. [8] Sillitoe R. H., "Porphyry copper systems", Economic Geology 105 (2010), p. 3-41. DOI:10.2113/gsecongeo.105.1.3 [DOI:10.2113/gsecongeo.105.1.3]
9. [9] Burgisser A., Scaillet B., "Redox evolution of a degassing magma rising to the surface". Nature, 445 (2007), 194. [DOI:10.1038/nature05509]
10. [10] Moretti R., Ottonello G., "Solubility and speciation of sulfur in silicate melts: The Conjugated Toop‐Samis‐Flood‐Grjotheim (CTSFG) model". Geochimica et Cosmochimica Acta 69 (2005), 801-823. [DOI:10.1016/j.gca.2004.09.006]
11. [11] Ballard J.R., Palin J.M., Campbell I.H., "Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile", Contributions to Mineralogy and Petrology 144 (2002), p. 347-364.https://link.springer.com/article/10.1007/s00410-002-0402-5 [DOI:10.1007/s00410-002-0402-5]
12. [12] Smythe D. J., Brenan J. M., "Magmatic oxygen fugacity estimated using zircon‐melt partitioning of cerium". Earth and Planetary Science Letters 453 (2016), 260-266. [DOI:10.1016/j.epsl.2016.08.013]
13. [13] Trail D., Watson E. B., Tailby N. D., "The oxidation state of Hadean magmas and implications for early Earth's atmosphere". Nature, 480 (2011), 79-82. [DOI:10.1038/nature10655]
14. [14] Carley T.L., Miller C.F., Wooden J.L., Padilla A.J., Schmitt A.K., Economos R.C., Bindeman I.N., Jordan B.T., "Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record." Earth Planet. Sci. Lett. 405 (2014), 85-97. [DOI:10.1016/j.epsl.2014.08.015]
15. [15] Dilles J.H., Kent A.J.R., Wooden J.L., Tosdal R.M., Koleszar A., Lee R.G., Farmer L.P., "Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas." Econ. Geol. 110 (2015), 241-251. [DOI:10.2113/econgeo.110.1.241]
16. [16] Shen P., Hattori K., Jackson S., Seitmuratova E., "Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt", Economic Geology 110 (2015), p. 1861-1878. DOI: 10.2113/econgeo.110.7.1861 [DOI:10.2113/econgeo.110.7.1861]
17. [17] Cherniak D.J., Watson E.B., Hanchar J.M., "Rare-earth diffusion in zircon", Chemical Geology 134 (1997), p. 289-301. [DOI:10.1016/S0009-2541(96)00098-8]
18. [18] Liang H.Y., Campbell I.H., Allen C., Sun W.D., Liu C.Q., Yu H.X., Xie Y.W., Zhang Y.Q., "Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet", Mineral. Deposita 41 (2006), p. 152-159. Doi: 10.1007/s00126-005-0047-1 [DOI:10.1007/s00126-005-0047-1]
19. [19] Han Y.G., Zhang S.H., Pirajno F., Zhou X.W., Zhao G.C., Qu W.J., Liu S.H., Zhang J.M., Liang H.B., Yang K., "U-Pb and Re-Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: insights into the oxidation state of granitoids and Mo (Au) mineralization", Ore Geol. Rev. 55 (2013), p. 29-47. Doi: 10.1016/j.oregeorev.2013.04.006 [DOI:10.1016/j.oregeorev.2013.04.006]
20. [20] Qiu J.T., Yu X.Q., Santosh M., Zhang D.H., Chen S.Q., Li P.J., "Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China", Mineralium Deposita 48 (2013), p. 545-556. Doi: 10.1007/s00126-013-0456-5 [DOI:10.1007/s00126-013-0456-5]
21. [21] Aghazadeh M., Hou Z., Badrzadeh Z., Zhou L., "Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology", Ore Geology Reviews 70 (2015), p. 385-406. doi:10.1016/j.oregeorev.2015.03.003. [DOI:10.1016/j.oregeorev.2015.03.003]
22. [22] McCall G.J.H., "The geotectonic history of the Makran and adjacent areas of southern Iran", J. SE Asian Earth Sci. 15 (1997), p. 517-531. [DOI:10.1016/S0743-9547(97)00032-9]
23. [23] Pang K.N., Chung S.L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H.Y., Chu C.H., Lee H.Y., Lo C.H., "Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: magma genesis and tectonic implications", Lithos 180-181 (2013), p. 234-251. DOI:10.1016/j.lithos.2013.05.009 [DOI:10.1016/j.lithos.2013.05.009]
24. [24] Zarrinkoub M.H., Pang K.N., Chung S.L., Khatib M.M., Mohammadi S.S., Chiu H.Y., Lee H.Y., "Zircon U/Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran", Lithos 154 (2012) p. 392-405. DOI:10.1016/j.lithos.2012.08.007 [DOI:10.1016/j.lithos.2012.08.007]
25. [25] Karimpour M.H., Stern C.R., Farmer L., Saadat S., Malekzadeh Shafaroudi A., "Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran". Journal of Geopersia 1 (2011), p. 19-36. Doi: 10.22059/JGEOPE.2011.22162
26. [26] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan", Economic Geology 107 (2012), p. 295-332. [DOI:10.2113/econgeo.107.2.295]
27. [27] Arjmandzadeh R., Karimpour M.H., Mazaheri S.A., Santos J.F., Medina J.M., Homam S.M., "Sr/Nd isotope geochemistry and petrogenesis of the Chah-Shaljami granitoids (Lut Block, Eastern Iran)", Journal of Asian Earth Sciences 41 (2011), p. 283-296. [DOI:10.1016/j.jseaes.2011.02.014]
28. [28] Arjmandzadeh R., Santos J.F., "Sr-Nd isotope geochemistry and tectonomagmatic setting of the Dehsalm Cu-Mo porphyry mineralizing intrusives from Lut Block, eastern Iran", International ournal of Earth Sciences 103 (2014), p. 123-140. doi: 10.1007/s00531-013-0959-4 [DOI:10.1007/s00531-013-0959-4]
29. [29] Malekzadeh Shafaroudi A., Karimpour M.H., Stern C.R., "The Khopik porphyry copper-gold prospect, Lut Block, Eastern Iran: geology, alteration, mineralization, fluid inclusion, and oxygen isotope studies", Ore geology Reviews 65 (2015), p. 522-544. DOI: 10.1016/j.oregeorev.2014.04.015 [DOI:10.1016/j.oregeorev.2014.04.015]
30. [30] Kluyver H.M., Griffts R.J., Tirrul R., Chance P.N., Meixner H.M., "Explanatory text of the Lakar Kuh quadrangle 1:250,000". Geol Surv Iran 19 (1978), p. 1-175
31. [31] Xie L.W., Zhang Y.B., Zhang H.H., Sun J.F., Wu F.Y., "In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite", Chinese Science Bulletin 53 (2008): p. 1565-1573.doi: 10.1007/s11434-012-5177-0 [DOI:10.1007/s11434-012-5177-0]
32. [32] Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y., "GLITTER: data reduction software for laser ablation ICP-MS". Laser Ablation-ICP-MS in the Earth Sciences (2008): Current Practices and Outstanding Issues, 308-311.
33. [33] Smythe D. J., Brenan J. M., "Cerium oxidation state in silicate melts: combined fO(2), temperature and compositional effects", Geochim. Cosmochim. Acta 170 (2015), p. 173-187. Doi: 10.1016/j.gca.2015.07.016 [DOI:10.1016/j.gca.2015.07.016]
34. [34] Blundy J., Wood B., "Prediction of crystal-melt partition coefficients from elastic moduli", Nature 372 (1994), p. 452-454. https://www.nature.com/articles/372452a0 [DOI:10.1038/372452a0]
35. [35] Shannon R. T., "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32 (1976), p. 751-767. doi: 10.1107/S0567739476001551 [DOI:10.1107/S0567739476001551]
36. [36] Trail D., Watson E. B., Tailby N. D., "Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas", Geochimica et Cosmochimica Acta 97 (2012), p. 70-87. doi:10.1016/j.gca.2012.08.032 [DOI:10.1016/j.gca.2012.08.032]
37. [37] Ferry J. M., Watson E. B., "New thermodynamic models and revised calibrations for the ti-in-zircon and zr-in-rutile thermometers", Contributions to Mineralogy and Petrology 154 (2007), p. 429-437. Doi: 10.1007/s00410‐007‐0201‐0 [DOI:10.1007/s00410-007-0201-0]
38. [38] Lu Y. J., Loucks R. R., Fiorentini M. L., Yang Z. M., Hou Z. Q., "Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet", Geology 43 (2015), p. 583-586. Doi: 10.1130/G36734.1 [DOI:10.1130/G36734.1]
39. [39] Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W., "Ti-in-zircon thermometry: applications and limitations". Contrib. Mineral. Petrol. 156 (2008), 197-215. [DOI:10.1007/s00410-008-0281-5]
40. [40] Davidson J., Turner S., Handley H., Macpherson C., Dosseto A., "Amphibole "sponge" in arc crust?" Geology 35 (2007), 787-790. [DOI:10.1130/G23637A.1]
41. [41] Wang F.Y., Liu S.A., Li S.G., He Y.S., "Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: Implications for genetic relation to Cu-Au mineralization". Lithos 156-159 (2013), 97-111. [DOI:10.1016/j.lithos.2012.10.017]
42. [42] McDonough W., Sun S., "The composition of the Earth", Chemical Geology 120 (1995), p. 223-253. [DOI:10.1016/0009-2541(94)00140-4]
43. [43] Sun W.D., Huang R., Li H., Yongbin H., "Porphyry deposits and oxidized magma". Ore Geology Reviews 65 (2015), 97-131. DOI: 10.1016/j.oregeorev.2014.09.004 [DOI:10.1016/j.oregeorev.2014.09.004]
44. [44] Hattori K., Wang J., Kobylinski C., Baumgartner R., Morfin S., Shen P., "Zircon composition: indicator of fertile igneous rocks related to porphyry copper deposits (Extended Abstract)", Soc. Geol. Applied Mineral Deposits 2 (2017), p. 295-298.
45. [45] Mungall J.E., "Roasting the mantle: slab melting and the genesis of major Au and Aurich Cu deposits", Geology 30 (2002), p. 915-918. https://doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 [DOI:10.1130/0091-7613(2002)0302.0.CO;2]
46. [46] Sun W.D., Liang H.Y., Ling M.X., Zhan M.Z., Ding X., Zhang H., Yang X.Y., Li Y.L., Ireland T.R., Wei Q.R., Fan W.M., "The link between reduced porphyry copper deposits and oxidized magmas", Geochim. Cosmochim. Acta 103 (2013b), p. 263-275. DOI:10.1016/j.oregeorev.2014.09.004 [DOI:10.1016/j.oregeorev.2014.09.004]
47. [47] Sun W.D., Bennett V.C., Eggins S.M., Arculus R.J., Perfit M.R., "Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results", Chem. Geol. 196 (2003b), p. 259-281. Doi: 10.1016/S0009-2541(02)00416-3 [DOI:10.1016/S0009-2541(02)00416-3]
48. [48] Sun W.D., Arculus R.J., Kamenetsky V.S., Binns R.A., "Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization", Nature 431 (2004a), p. 975-978. DOI: 10.1038/nature02972 [DOI:10.1038/nature02972]
49. [49] Hofmann A.W., "Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust", Earth Planet. Sci. Lett. 90 (1988), p. 297-314. [DOI:10.1016/0012-821X(88)90132-X]
50. [50] Lee C.T.A., Luffi P., Chin E.J., Bouchet R., Dasgupta R., Morton D.M., Le Roux V., Yin Q.Z., Jin D., "Copper systematics in arc magmas and implications for crust-mantle differentiation", Science 336 (2012), p. 64-68. DOI: 10.1126/science.1217313 [DOI:10.1126/science.1217313]
51. [51] Liu X., Xiong X., Audétat A., Li Y., Song M., Li L., Sun W., Ding X., "Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions", Geochim. Cosmochim. Acta 125 (2014), p. 1-22. [DOI:10.1016/j.gca.2013.09.039]
52. [52] Lorand J.P., "Are spinel lherzolite xenoliths representative of the abundance of sulfur in the upper mantle". Geochim. Cosmochim. Acta 54 (1990), p. 1487-1492. [DOI:10.1016/0016-7037(90)90173-I]
53. [53] Mavrogenes J.A., O'Neill H.S.C., "The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas", Geochim. Cosmochim. Acta 63 (1999), p. 1173-1180. [DOI:10.1016/S0016-7037(98)00289-0]
54. [54] Vila T., Sillitoe R.H., Betzhold J., Viteri E., "The porphyry gold deposit at Marte, Northern Chile", Econ. Geol. Bull. Soc. Econ. Geol. 86 (1991), p. 1271-1286. [DOI:10.2113/gsecongeo.86.6.1271]
55. [55] Stern C.R., Funk J.A., Skewes M.A., Arevalo A., "Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit chile, and the role of sulfur- and copperrich magmas in its formation", Econ. Geol. 102 (2007), p.1335-1344. DOI:10.2113/gsecongeo.102.7.1335 [DOI:10.2113/gsecongeo.102.7.1335]
56. [56] Chou I.M., "Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor". Am. Mineral. 63 (1978), 690-703.
57. [57] Huebner J.S., Sato M., "The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers". Am. Mineral. 55 (1970), 934-952.
58. [58] Xiao L., Clemens J.D., "Origin of potassic (C-type) adakite magmas: experimental and field constraints". Lithos 95 (2007):399-414 [DOI:10.1016/j.lithos.2006.09.002]
59. [59] Rapp R.P., Shimizu N., Norman M.D., "Reaction between slabderived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa". Chem Geol 160 (1999):335-356 [DOI:10.1016/S0009-2541(99)00106-0]
60. [60] Shaw D. M., "Trace element fractkmation during anatexis". Geochim. cosmochim. Ada, 34 (1970), 331-40. [DOI:10.1016/0016-7037(70)90110-9]
61. [61] Hattori K., "Porphyry Copper Potential in Japan Based on Magmatic Oxidation State", Resource Geology, 68 (2018), p. 126-137. doi: 10.1111/rge.12160 [DOI:10.1111/rge.12160]
62. [62] Lee C.T.A., Luffi P., Le Roux V., Dasgupta R., Albarede F., Leeman W.P., "The redox state of arc mantle using Zn/Fe systematics". Nature 468 (2010), 681-685. [DOI:10.1038/nature09617]
63. [63] Oyarzun R., Marquez A., Lillo J., Lopez I., Rivera S., "Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism". Mineral. Deposita 36 (2001), 794-798. [DOI:10.1007/s001260100205]
64. [64] Sun W.D., Ling M.X., Chung S.L., Ding X., Yang X.Y., Liang H.Y., Fan W.M., Goldfarb R., Yin Q.Z., "Geochemical constraints on adakites of different origins and copper mineralization", J. Geol. 120 (2012a), p. 105-120. [DOI:10.1086/662736]
65. [65] Sun W.D., Zhang H., Ling M.X., Ding X., Chung S.L., Zhou J.B., Yang X.Y., Fan W.M., "The genetic association of adakites and Cu-Au ore deposits", Int. Geol. Rev. 53 (2011), p. 691-703. [DOI:10.1080/00206814.2010.507362]
66. [66] Zhang H., Ling M.X., Liu Y.L., Tu X.L., Wang F.Y., Li C.Y., Liang H.Y., Yang X.Y., Arndt N.T., Sun W.D. "High oxygen fugacity and slab melting linked to Cu mineralization: evidence from Dexing porphyry copper deposits, southeastern China", J. Geol., 121 (2013), 289-305. Doi: 10.1086/669975 [DOI:10.1086/669975]
67. [67] Zhang H., Li C.Y., Yang X.Y., Sun Y.L., Deng J.H., Liang H.Y., Wang R.L., Wang B.H., Wang Y.X., Sun W.D., "Shapinggou: the largest Climax-type porphyry Mo deposit in China". Int. Geol. Rev. 56 (2013), 313-331. [DOI:10.1080/00206814.2013.855363]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb