Volume 29, Issue 4 (12-2021)                   www.ijcm.ir 2021, 29(4): 11-11 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi, Torkian. Geothermobarometry of Tekieh intrusive complex (south of Qorveh, Kurdistan Province): Constraint on using mineral chemistry of amphibole. www.ijcm.ir 2021; 29 (4) :11-11
URL: http://ijcm.ir/article-1-1686-en.html
Abstract:   (1038 Views)
The Tekieh intrusive complex is located in S-Qorveh in northern parts of the Sanandaj-Sirjan Zone. In this collection, the granite inclusions located in the granite host compound have a diorite composition and the inclusions located in the monzonite host compound have a gabbroic composition. The enclaves are scattered in rounded and elliptical shapes in the host rocks. Generally, they have a sudden contact with the host rock and are composed of igneous minerals. Amphiboles are calcic-type, and their composition is magnesio-hornblende and actinolite. The plagioclases have a range of composition from oligoclase to andesine and oligoclase to bytownite for host rock and enclaves samples, respectively. Based on geothermobarometry studies on amphiboles and also amphibole-plagioclase pairs, the temperatures of 660-5540C and 742-5920C with pressure ranges of 0.3 to 3.62 and 0.21 to 1.8 Kbar were estimated for host rock and diorite enclaves samples, respectively. Oxygen fugacity was high in magma that is consistent with calc-alkaline nature and the formation of rocks in its subduction setting.
Full-Text [PDF 3191 kb]   (361 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Defant M. J., Drummond, M.S., "Derivation of some modern arc magmas by melting of young subducted lithosphere", Nature, N.347 (1990), p.662-665. [DOI:10.1038/347662a0]
2. [2] Martin H., Smithies R.H., Rapp R., Moyen J,-F., Champion D., "An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution", Lithos, N.79 (2005), p.1-24. [DOI:10.1016/j.lithos.2004.04.048]
3. [3] Richards J.P., Kerrich R., "Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis", Economic Geology, N.102 (2007), p.537-576. [DOI:10.2113/gsecongeo.102.4.537]
4. [4] Castillo P.R., Janney P.E., Solidum R.U., "Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting", Contributions to Mineralogy and Petrology, N.134 (1999), p.33-51. [DOI:10.1007/s004100050467]
5. [5] Macpherson C.G., Dreher S.T., Thirlwall M.F., "Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines", Earth and Planetary Science Letters, N.243 (2006), p.581-593. [DOI:10.1016/j.epsl.2005.12.034]
6. [6] Li X.H., Li W.X., Wang X.C., Li Q.L., Liu Y., Tang G.Q., "Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: in situ zircon Hf-O isotopic constraints", Science in China Series D: Earth Science, N.52 (2009), p.1262-1278. [DOI:10.1007/s11430-009-0117-9]
7. [7] Guo Z.F., Wilson M., Liu J., "Post-collisional adakites in south Tibet: products of partial melting of subsuction-modified lower crust", Lithos, N.96 (2007), p.205-224. [DOI:10.1016/j.lithos.2006.09.011]
8. [8] Huang F., Li S., Dong F., He Y., Chen F., "High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust", Chemical Geology, N.255 (2008), p.1-13. [DOI:10.1016/j.chemgeo.2008.02.014]
9. [9] Sorkhabi R., "Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian's Forty-Five Years of Research Contributions", Geological Society of America Special Papers. N.525 (2017). [DOI:10.1130/SPE525]
10. [10] Pang K.-N., Chung S.-L., Zarrinkoub M.H., Khatib M.M., Mohammadi S.S., Chiu H.-Y., Chu C.-H., Lee H.-Y., Lo C.-H., "Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: magma genesis and tectonic implications", Lithos, N.180-181 (2013), p.234-251. [DOI:10.1016/j.lithos.2013.05.009]
11. [11] Yari F., Zarrinkoub M.H., Mohammadi S.S., "Petrography and geochemistry of magmatic rocks in north of Kalate Shab area (East of Sarbisheh), Eastern Iran", Iranian Journal of Crystallography and Mineralogy, 28 (3) (2020), p.685-696, (in Persian). [DOI:10.29252/ijcm.28.3.685]
12. [12] Richards J.P., "Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision", Ore Geology Reviews, N.70 (2015), p.323-345. [DOI:10.1016/j.oregeorev.2014.11.009]
13. [13] Middlemost E.A.K., "Naming materials in the magma/igneous rock system", Earth Science Reviews, N.37 (1994), p.215-224. [DOI:10.1016/0012-8252(94)90029-9]
14. [14] Peccerillo A., Taylor S.R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonon area, northern Turkey", Contributions to Mineralogy and Petrology, N.58 (1976), p.63-81. [DOI:10.1007/BF00384745]
15. [15] Le Maitre R.W., "Igneous Rocks: A Classification and Glossary of Terms", Cambridge University Press, (2002), 236p. [DOI:10.1017/CBO9780511535581]
16. [16] Barton M., "A comparative study of some minerals occurring in the potassium-rich alkaline rocks of the Leucite Hills, Wyoming, the Vico volcano, Western Italy, and the Toro-Ankole region, Uganda", Journal of Mineralogy and Geochemistry, N.137 (1979), p.113-134.
17. [17] Frost B.R., Frost C.D., "A geochemical classification for feldspathic rocks", Journal of Petrology, N.49 (11) (2008), p.1955-1969. [DOI:10.1093/petrology/egn054]
18. [18] Conticelli S., Avanzinelli R., Ammannati E., Casalini M., "The Role of carbon from recycled sediments in the shift from lamproite to leucitite in the Central Mediterranean region", Lithos, N.232 (2015), p.174-196. [DOI:10.1016/j.lithos.2015.07.002]
19. [19] Motoki M., Sichel S.E., Vargas T., Melo D.P., Motoki K,F., "Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil", Anais da Academia Brasileira de Ciências. N.87 (2015), p.1959-1979. [DOI:10.1590/0001-3765201520130385]
20. [20] Conceicao R.V., Nardi L.V.S., Conceicao H., "The Santanápolis Syenite: genesis and evolution Paleoproterozoic shoshonitic syenites in northeastern Brazil", International Geology Review, N.42 (2000), p.1-17. [DOI:10.1080/00206810009465119]
21. [21] Bucholz C.E., Jagoutz O., Schmidt M.W., Sambuu O., "Fractional Crystallization of High-K Arc Magmas: Biotite-versus Amphibole-Dominated Fractionation Series in the Dariv Igneous Complex, Western Mongolia", Contributions to Mineralogy and Petrology, N.168 (5) (2014), p.1888-1899. [DOI:10.1007/s00410-014-1072-9]
22. [22] Nakamura N., "Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites", Geochimica et Cosmochimica Acta, N.38 (1974), p.757-775. [DOI:10.1016/0016-7037(74)90149-5]
23. [23] McDonough W.F., Sun S.S., (1995). "The composition of the Earth", Chemical Geology. N.120 (1995), p.223-253. [DOI:10.1016/0009-2541(94)00140-4]
24. [24] Taylor S.R., McLennan S.M., (1995). "The geochemical evolution of the continental crust", Reviews of Geophysics, N.33 (1995), p.241-265. [DOI:10.1029/95RG00262]
25. [25] Foley S.F., Barth M.G., Jenner G.A., "Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas", Geochimica et Cosmochimica Acta, N.64 (2000), p.933-938. [DOI:10.1016/S0016-7037(99)00355-5]
26. [26] Gao Y., Yang Z., Santosh M., Hou Z., Wei R., Tian S., "Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet", Lithos, N.119 (2010), p.651-663. [DOI:10.1016/j.lithos.2010.08.018]
27. [27] Le Roux A.P., "Geochemical correlation between southern African kimberlites and south Atlantic hotspots", Nature, N.324 (1986), p.243-245. [DOI:10.1038/324243a0]
28. [28] Li X.Y., Zheng J.P., Ma Q., Xiong Q., Griffin W.L., Lu J,G., "From enriched to depleted mantle: Evidence from Cretaceous lamprophyres and Paleogene basaltic rocks in eastern and central Guangxi Province, western Cathaysia block of South China", Lithos, N.184-187 (2014), p.300-313. [DOI:10.1016/j.lithos.2013.10.039]
29. [29] Jahn B.M., Wu F.Y., Lo C.H., Tsai C.H., "Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China", Chemical Geology, N.157 (1999), p.119-146. [DOI:10.1016/S0009-2541(98)00197-1]
30. [30] Chappell B.W., "Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites", Lithos, N.46 (1999), p.535-551. [DOI:10.1016/S0024-4937(98)00086-3]
31. [31] Müller D., Rock N.M.S., Groves D.I., "Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: a pilot study", Mineralogy and Petrology, N.46 (1992), p.259-289. [DOI:10.1007/BF01173568]
32. [32] Müller D., Groves D.I., "Potassic Igneous Rocks and Associated Gold-Copper Mineralization", Mineral Resource Reviews. Fourth Edition (2016). [DOI:10.1007/978-3-319-23051-1]
33. [33] Pearce J.A., Harris N.B.W., Tindle A.G., "Trace element discrimination diagrams for the tectonic interpretation of granitic rocks", Journal of Petrology, N.25 (1984), p.956-983. [DOI:10.1093/petrology/25.4.956]
34. [34] Moyen J.F., "High Sr/Y and La/Yb ratios: The meaning of the "adakitic signature", Lithos, N.112 (2009), p.556-574. [DOI:10.1016/j.lithos.2009.04.001]
35. [35] Baker M.B., Hirschmann M.M., Ghiorso M.S., Stolper E.M., "Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations", Nature, N.375 (1995), p.308-311. [DOI:10.1038/375308a0]
36. [36] Lloyd F., Arima M., Edgar A., "Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics", Contributions to Mineralogy and Petrology, N.91 (1985), p.321-329. [DOI:10.1007/BF00374688]
37. [37] Stern C.R., Kilian R., "Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone", Contributions to Mineralogy and Petrology, N.123 (1996), p.263-281. [DOI:10.1007/s004100050155]
38. [38] Rapp R.P., Shimizu N., Norman M.D., Applegate G.S., "Reaction between slab derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa", Chemical Geology, N.160 (1999), p.335-356. [DOI:10.1016/S0009-2541(99)00106-0]
39. [39] Wang Q., Wyman D.A., Xu J.-F., Zhao Z.-H., Jian P., Xiong X.-L., Bao Z.-W., Li C.-F., Bai Z.-H., "Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu-Au mineralization", Lithos, N.89 (2006), p.424-446. [DOI:10.1016/j.lithos.2005.12.010]
40. [40] Martin, H., "Adakitic magmas: modern analogous of Archaean granitoids", Lithos, N.46 (1999), p.411-429. [DOI:10.1016/S0024-4937(98)00076-0]
41. [41] Petford, N., Atherton, M., "Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru", Journal of Petrology, N.46 (1996), p.1491-1521. [DOI:10.1093/petrology/37.6.1491]
42. [42] Liu S.A., Li S.G., He Y.S., Huang F., "Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization", Geochimica et Cosmochimica Acta, N.74 (2010), p.7160-7178. [DOI:10.1016/j.gca.2010.09.003]
43. [43] Ling M.X., Wang F.Y., Ding X., Zhou J.B., Sun W.D., "Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: geochemical constraints", International Geology Review, N.53 (2011), p.727-740. [DOI:10.1080/00206814.2010.482349]
44. [44] Johnson, K. T. M., "Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures; petrogenetic implications", Mineralogical Magazine, N.58 (1994), p. 454-455. [DOI:10.1180/minmag.1994.58A.1.236]
45. [45] Defant M.J., Kepezhinskas P., "Adakites: A review of slab melting over the past decade and the case for a slab-melt component in arcs", EOS, Transactions, N.82 (65) (2001), p.68-69. [DOI:10.1029/01EO00038]
46. [46] Rapp R.P., Xiao L., Shimizu N., "Experimental constraints on the origin of potassium-rich adakites in eastern China", Acta Petrologica Sinica, N.18 (2002), p.293-302.
47. [47] Xiao L., Clemens J.D., "Origin of potassic (C-type) adakite magmas: experimental and field constraints", Lithos, N.95 (2007), p.399-414. [DOI:10.1016/j.lithos.2006.09.002]
48. [48] Sen C., Dunn T., "Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites", Contributions to Mineralogy and Petrology, N.117 (1994), p.394-409. [DOI:10.1007/BF00307273]
49. [49] Jochum K.P., Stolz J., McOrist G., "Niobium and tantalum in carbonaceous chondrites : constraints on the Solar System and primitive mantle niobium/tantalum, zirconium/niobium, and niobium/uranium ratios", Meteoritics and Planetary Science, N.35 (2000), p.229-235. [DOI:10.1111/j.1945-5100.2000.tb01771.x]
50. [50] Rudnick R.L., Gao S., "Composition of the Continental Crust, in Holland, H.D., and Turekian, K.K., eds" Treatise on Geochemistry, Oxford, UK, Elsevier, (2003), p.1-64. [DOI:10.1016/B0-08-043751-6/03016-4]
51. [51] Foley S., Tiepolo M., Vannucci R., "Growth of early continental crust controlled by melting of amphibolite in subduction zones", Nature, N.417 (2002), p.837-840. [DOI:10.1038/nature00799]
52. [52] Li B., Jiang S.Y., Zhang Q., Zhao H.X., Zhao K.D., "Geochemistry, geochronology and Sr-Nd-Pb-Hf isotopic compositions of Middle to Late Jurassic syenite-granodiorites-dacite in South China: Petrogenesis and tectonic implications", Gondwana Research, (2015), p.21-42. [DOI:10.1016/j.gr.2015.05.006]
53. [53] Schreiber, H. D., Lauer, H. V., Thanyasir, T., "The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interaction in silicate melts", Geochim. Cosmochim. Acta, N.44 (1980), p.1599-1612. [DOI:10.1016/0016-7037(80)90120-9]
54. [54] Hole, M. J., Saunders, A. D., Marriner, G. F., Tarney, J., "Subduction of pelagic sediments: Implications for the origin of Ce-anomalous basalts from the Mariana Islands", Journal of Geological Society, N.141 (1984), p.453-472. [DOI:10.1144/gsjgs.141.3.0453]
55. [55] Hawkesworth C.J., Turner S.P., McDermott F., Peate D.W., van Calsteren P., "U-Th isotopes in arc magmas; implications for element transfer from the subducted crust", Science, N.276 (1997), p.551-555. [DOI:10.1126/science.276.5312.551]
56. [56] Staudigel H., Plank T., White W.M., Schmincke H.-U., "Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418, in Subduction: Top to Bottom", Geophysical Monograph Series, N.96 (1996), p.19-38. [DOI:10.1029/GM096p0019]
57. [57] Johnson M.C., Plank T., "Dehydration and melting experiments constrain the fate of subducted sediments", Geochemistry Geophysics and Geosystem, G3 7, 1999GC000014, (1999). [DOI:10.1029/1999GC000014]
58. [58] Mibe K., Kawamoto T., Matsukage K,N., Fei Y., Ono S., "Slab melting versus slab dehydration in subduction-zone magmatism", PNAS, N.108 (2011), p.8177-8182. [DOI:10.1073/pnas.1010968108]
59. [59] Hofmann A., Jochum K., Seufert M., White W., "Nb and Pb in oceanic basalts: new constraints on mantle evolution", Earth and Planetary Science Letters, N.79 (1986), p.33-45. [DOI:10.1016/0012-821X(86)90038-5]
60. [60] Kelemen P.B., Yogodzinski G.M., Scholl D.W., "Along-strike variation in lavas of the Aleutian Island Arc: Implications for the genesis of high Mg# Andesite and the continental crust, in Inside the Subduction Factory", American Geophysical :union: Monograph, N.138 (2003), p.223-311. [DOI:10.1029/138GM11]
61. [61] Ayers J., "Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones", Contributions to Mineralogy and Petrology, N.132 (1998), p.390-404. [DOI:10.1007/s004100050431]
62. [62] Plank T., Langmuir C.H., "The chemical composition of subducting sediment and its consequences for the crust and mantle", Chemical Geology, N.145 (1998), p.325-394. [DOI:10.1016/S0009-2541(97)00150-2]
63. [63] Rogers, N.W., Hawkesworth, C.J., Mattey, D.P., Harmon, R.S., "Sediment subduction and the source of potassium in orogenic leucitites", Geology, N.15 (1987), p.451-453. https://doi.org/10.1130/0091-7613(1987)15<451:SSATSO>2.0.CO;2 [DOI:10.1130/0091-7613(1987)152.0.CO;2]
64. [64] Wang Q., Wyman D.A., Xu J., Jian P., Zhao Z., Li C., Xu W., Ma J., He B., "Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust", Geochimica et cosmochimica acta, N.71 (2007), p.2609-2636. [DOI:10.1016/j.gca.2007.03.008]
65. [65] Alinaghi A., Koulakov I., Thybo H., "Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran", Geophysical Journal International, N.169 (2007), p.1089-1102. [DOI:10.1111/j.1365-246X.2007.03317.x]
66. [66] Walker R., Jackson J., "Active tectonics and late Cenozoic strain distribution in central and eastern Iran", Tectonics. N.23 (2004), p.1-24. [DOI:10.1029/2003TC001529]
67. [67] Aldanmaz E., Pearce J.A., Thirlwall M.F., Mitchell J.G., "Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey", Journal of Volcanology and Geothermal Research, N.102 (2000), p.67-95. [DOI:10.1016/S0377-0273(00)00182-7]
68. [68] Niu Y.L., "Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China", Geological Journal of China Universities, N.11 (2005), p.9-46.
69. [69] Lustrino M., "How the delamination and detachment of lower crust can influence basaltic magmatism", Earth Science Reviews, N.72 (2005), p.21-38. [DOI:10.1016/j.earscirev.2005.03.004]
70. [70] Prelevic D., Foley S.F., Romer R., Conticelli S., "Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics", Geochimica et Cosmochimica Acta. N.72 (2008), p.2125-2156. [DOI:10.1016/j.gca.2008.01.029]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb