Volume 29, Issue 1 (3-2021)                   www.ijcm.ir 2021, 29(1): 221-236 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani Pour Shokouh, Abedini, Alipour. Study of ore mineralization of polymetallic veins of the Qarah Changal area, northwest of Qazvin. www.ijcm.ir 2021; 29 (1) :221-236
URL: http://ijcm.ir/article-1-1596-en.html
1- Department of Geology, Faculty of Sciences, Urmia University, 5756151818 Urmia, Iran
Abstract:   (1361 Views)
The vein-type mineralization of the base (Zn, Pb, and Cu) and precious metals (Au) in the Qarah Changel area (northwest of Qazvin) is located in the southern part of the Tarom-Hashtjin metallogenic belt. Volcanic (trachy-andesite, rhyolite and dacite) and pyroclastic (tuff, tuffite and tuffaceous shale) (Eocene) rocks are the hosts of this mineralization. Distinctive alterations around mineralized veins include argillic, sericitic, propylitic and silicic. Ore mineralization has occurred in two forms, hypogene and supergene. Hypogene ore minerals include sphalerite, galena, chalcopyrite, pyrite, magnetite, gold, digenite, and bornite, which are associated with supergene mineralogical assemblages such as calcocite, covellite, cerussite, malachite, azurite, hematite, and goethite. Calcite and quartz are the associated gaugues of this mineralization. The texture of the ore consists of vein-veinlet, replacement, breccia, disseminated, bladed and open space filling. According to geochemical studies, volcanic host rocks are peralumine and have the nature of high- potassium clac-alkaline to shoshonitic. The enrichment of K, Ba and Cs in comparision to Ti, Nb and Zr, the LREEs enrichment relative to HREEs, and the occurrence of negative Nb anomaly indicate the formation of a magma generating volcanic rocks in the subduction zone. Studies of fluid inclusions in quartz mineral co-genetic with sulfide ore minerals showed that they are chiefly of L+V and having homogenization temperature in the range of 202 to 247 C°. The salinity of fluid iinclusions also ranges from 10 to 22 wt% NaCl eq. According to microthermometric data, boiling and cooling are the most important mechanisms in the development of mineralized veins. Evidence such as the coexistence of liquid and vapor-rich fluid inclusions, hydrothermal breccias, microcrystalline quartz and bladed calcite confirm the occurrence of the boiling phenomenon during the formation of mineralized veins. Combining the results of mineralogical studies, texture and associated alterations, geochemistry and tectonic setting of volcanic rocks, and   microthermometry of fluid inclusions indicate that  mineralization in the Qarah Changel area is most similar to low sulfidation-type epitermal ore deposits.
Full-Text [PDF 5205 kb]   (545 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Alavi M., " Tectonic map of the Middle East: Scale 1:5,000,000 ", Geological Survey of Iran (1991).
2. [2] Ghorbani M., "Economic Geology of Iran's Mineral and Natural Resources", Arian Zamin publications (2007) 1-515.
3. [3] Nabatian G., Giang S.Y., Honarmand M., Neubauer F., "Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt", Lithos 244 (2016) 43-58. [DOI:10.1016/j.lithos.2015.11.020]
4. [4] Verdel C., Wernicke B. P., Hassanzadeh J., Guest B., "A Paleogene extensional arc flare-up in Iran", Tectonics 30 (2011) 1-20. [DOI:10.1029/2010TC002809]
5. [5] Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monie P., Meyer B., Wortel R., "Zagros orogeny: a subduction-dominated process", Geological Magazine 148 (2011) 692-725. [DOI:10.1017/S001675681100046X]
6. [6] Asiabanha A., Foden, J., "Post-collisional transition from an extensional volcanosedimentary basin to a continental arc in the Alborz Ranges, North of Iran ",. Lithos 148 (2012) 98-111. [DOI:10.1016/j.lithos.2012.05.014]
7. [7] Le Bas M. J., Le Maitre R. W., Streckeisen A., Zanettin B., "A chemical classification of volcanic rocks based on the the total alkali-silica diagram", Journal of Petrology 27 (1986) 745-750. [DOI:10.1093/petrology/27.3.745]
8. [8] Winchester J. A., Floyd P. A., " Geochemical discrimination of different magma series and their differentiation pro-textures and setting of VMS mineralization in the Pilbara ducts using immobile elements", Chemical Geology 20 (1977) 325-344. [DOI:10.1016/0009-2541(77)90057-2]
9. [9] Peccerillo A., Taylor S. R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey", Contributions to Mineralogy and Petrology 58 (1976) 63-81. [DOI:10.1007/BF00384745]
10. [10] Shand S. J., "Eruptive rocks, their genesis, composition, classification and their relation to ore deposits", 3rd edition, Hafner, New York (1947) 1-448.
11. [11] Boynton W. V.," Cosmochemistry of the rare earth elements, Meteorite studies", In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam (1984) 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
12. [12] Gill R., " Igneous rocks and processes", Wiley-Blackwell, New Jersey (2010) 1-428.
13. [13] Sun S. S., McDonough W. F.," Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes", In: Magmatism in the Ocean, Basins", (Eds. Saunders A. D., Norry M. J.,) special publications Geological Society, London 42 (1989) 313-345. [DOI:10.1144/GSL.SP.1989.042.01.19]
14. [14] Maniar P. D., Piccoli P. M., "Tectonic discrimination of granitoids", Geological Society of America Bulletin 101(1989) 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [DOI:10.1130/0016-7606(1989)1012.3.CO;2]
15. [15] Graupner T., Muhlbach C., Schwarz-Schampera U., Henjes-Kunst F., Melcher F., Terblanche H., "Mineralogy of high-field-strength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa", Ore Geology Reviews 64 (2014) 583-601. [DOI:10.1016/j.oregeorev.2014.02.012]
16. [16] Tepper J. H., Nelson B. K., Bergantz G. W., Irving A. J., " Petrology of the Chilliwack batholith, North Cascades, Washington: Generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity", Contributions to Mineralogy and Petrology 113 (1993) 333-351. [DOI:10.1007/BF00286926]
17. [17] Abedini A., Calagari A.A., Naseri H., "Mineralization and REE geochemistry of hydrothermal quartz and calcite of Helmesi vein-type copper deposite, NW Iran", Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 281 (2016) 123-134. [DOI:10.1127/njgpa/2016/0591]
18. [18] Peters T. J., Menzies M., Thirwall M., Kyle P., "Zuni-Bandera volcanism, Rio Grande, USA - melt formation in garnet- and spinel facies mantle straddling the Asthenosphere-Lithosphere boundary", Lithos 102 (2008) 295-315. [DOI:10.1016/j.lithos.2007.08.006]
19. [19] Sillitoe R. H., Hedenquist J. W., "Linkages between volcano-tectonic settings, ore-fluid compositions and epithermal precious metal deposits", Society of Economic Geologists, Special Publication 10 (2003) 315-343.
20. [20] Walker J. A., Patino L. C., Carr M. J., Feigenson M. D., " Slab control over HFSE depletions in central Nicaragua" Earth and Planetary Science Letters 192 (2001) 535-543. [DOI:10.1016/S0012-821X(01)00476-9]
21. [21] Thieblemont D., Tegyey M., "Geochemical discrimination of differentiated magmatic rocks attesting for the variable origin and tectonic setting of calc-alkaline magmas" Comptes Rendus De L Academie Des Sciences Serie II 319 (1994) 87-94.
22. [22] Muller D., Groves D.I., "Potassic igneous rocks and associated gold copper mineralization", Springer Verlage (1997) 241 p.
23. [23] Le Maitre R.W., "A Classification of igneous rocks and Glossary of Terms (IUGS): Recommendations of the IUGS Subcommission on the Systematics of igneous rocks", Blackwell, Oxford (1989) 193 p.
24. [24] Pearce J. A., "Role of the sub-continental lithosphere in magma genesis at active continental margins", In: Hawkesworth, C. J., Norry M. j., (Eds.,) Continental Basalts and Mantle Xenoliths, Shiva, Nantwish (1983) 230-249.
25. [25] Stern R. J., " Subduction zones", Reviews of Geophysics 40 (2002) 1012-1054. [DOI:10.1029/2001RG000108]
26. [26] McCulloch M. T., Gamble J. A., " Geochemical and geodynamical constraints on subduction zone magmatism", Earth and Planetary Science Letters 102 (1991) 358-374. [DOI:10.1016/0012-821X(91)90029-H]
27. [27] Wood D. A., " The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classi- fication and to establishing the nature of crustal contamination of basaltic lavas of the british Tertiary volcanic province", Earth and Planetary Science Letters 50 (1980) 11-30. [DOI:10.1016/0012-821X(80)90116-8]
28. [28] Valenza K., Moritz R., Mouttaqi A., Fontignie D. and Sharp Z., "Vein and Karst barite deposits," in the western Jebilet of Morocco: Fluid inclusion and isotope (S, O, Sr) evidence for regional fluid mixing related to central Atlantic Rifting", Economic Geology 95 (2000) 587-606. [DOI:10.2113/gsecongeo.95.3.587]
29. [29] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
30. [30] Roedder E., "Fluid Inclusions", Reviews in Mineralogy 12 (1984) 1-646. [DOI:10.2465/minerj.12.1]
31. [31] Haas J. L., "The effect of salinity on the maximum thermal gradient of a hydrothermal system in hydrostatic pressure", Economic Geology 66 (1971) 940-946. [DOI:10.2113/gsecongeo.66.6.940]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb