Volume 29, Issue 1 (3-2021)                   www.ijcm.ir 2021, 29(1): 19-34 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami, Malekzadeh Shafaroudi, Karimpour. Study of vein-type Cu±Au mineralization in Sangan mineral occurrence (southeastern Torbat-e-Heydarieh), Based on mineralogy, geochemistry and fluid inclusion. www.ijcm.ir 2021; 29 (1) :19-34
URL: http://ijcm.ir/article-1-1583-en.html
1- Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2- Department of Geology, Research Center for Ore Deposit of Eastern Iran, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Abstract:   (653 Views)
Sangan prospect area is located northeast of Torbat-e-Heydarieh in Khorasan Razavi Province and in relation to regional geology, it is situated in eastern section of Khaf-Kashmar-Bardaskan magmatic belt. Metamorphosed sediments of the Shemshak Formation (slate, schist, quartzite) is the oldest unit, which is intruded by Kafardoogh granitic intrusion. The dikes of quartz monzosyenitic and dioritic composition in the last magmatism stage have intruded into the fore mentioned units. Structurally-controlled mineralization has formed along subsidiary faults, branching from the Doruneh major fault, with general trends of NNW-SSE to WNW-ESE (dipping 60-90 degrees southerly and westerly) and NE-SE (dipping 50-70 degrees easterly). The major parts of mineral deposit has occurred in fault zones of metamorphosed Shemshak Formation due to deposition of mineralizing hydrothermal fluid in open spaces of faults as cement of fault breccia fragments. The hypogene mineralization is characterized by chalcopyrite as the main ore mineral and minor amount of pyrite together with quartz and barite as gangue minerals. Malachite, chrysocolla, chalcocite, neotocite and secondary iron oxides constitute the mineralization of oxidation and supergene zone. The occurrence of structures and textures as vein-breccia, open space filling, veinlets and secondary replacement are characteristics of mineralized veins in this area. Silicification is the principal alteration associated with mineralization. The geochemical survey of veins indicates not only high content of Cu (more than 5 percent), but also considerable anomaly of Au up to 0.4 ppm while other significant metallic elements are not anomalous. Cu, Pb, Zn, Ag and Mo have good positive geochemical correlation but Au does not show correlation with other elements (except Ag). Studying two phase liquid-rich primary fluid inclusions of quartz and barite along with mineralographic studies demonstrate two phase of hypogene mineralization. Accordingly, the main phase of primary mineralization has formed from a hypogene hydrothermal fluid at temperature of 274°C to 318°C and salinity of 7.3 to 12 wt% NaCl equivalent. The late phase, which is related to barite mineralization, has been derived from a fluid at temperatures between 200°C to 259°C and salinity of 10.2 to 11.4 wt% NaCl equivalent. The temperature and salinity data represents the role of fluid mixing and dilution by cool-dilute meteoric fluids as ore-forming processes. Based on mineralogy, structure, texture, alteration, vein geochemistry and fluid inclusion studies, the Sangan mineral occurrence most resembles vein-hydrothermal deposits of epithermal Cu±Au type.
Full-Text [PDF 7202 kb]   (191 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Karimpour M. H., Malekzadeh Shafaroudi A., Mazloumi Bajestani A., Keith Schader R., Stern Ch. R., Farmer L., Sadeghi M., "Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide-copper-gold deposit", Journal of Geochemical Exploration 183 (2017) 58-78. [DOI:10.1016/j.gexplo.2017.10.001]
2. [2] Karimpour M.H., Saadat S., Malekzadeh Shafaroudi A., "Exploration of Cu-Au Iron Oxide and Magnetite Ore Deposits in the VolcanicPlutonic Khaf-Kashmar-Bardsank Belt", 21th National Geosciences conference, Tehran (2003) (In Persian).
3. [3] Mazloumi A.R., Karimpour M.H., Rassa I., Rahimi B., Vosoughi Abedini M., "Kuh-E-Zar Gold Deposit in Torbat-e-Heydaryeh «New Model of Gold Mineralization»", Iranian Journal of Crystallography and Mineralogy 16 (2008) 363- 376 (In Persian).
4. [4] Karimpour M.H., Malekzadeh Shafaroudi A., "Skarn geochemistry - mineralogy and petrology of source rock Sangan Iron mine, Khorasan Razavi, Iran", Scientific Quarterly Journal Geosciences 65 (2008) 108-125 (In Persian).
5. [5] Golmohammadi A., Karimpour M.H., Malekzadeh Shafaroudi A., Mazaheri S.A., " Alteration-mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran", Ore Geology Reviews 65 (2015) 545-563. [DOI:10.1016/j.oregeorev.2014.07.005]
6. [6] Boomeri M., "Petrography and geochemistry of Sangan Fe-Skarn deposit and its igneous rocks, NE Iran", Ph.D. Thesis, University of Akita, Akita, Japan (1998) 226 pp.
7. [7] Karimpour M.H., Malekzadeh Shafaroudi A., "Comparison of the geochemistry of source rocks at Tannurjeh Au-bearing magnetite and Sangan Au-free magnetite deposits, Khorasan Razavi,Iran", Iranian Journal of Crystallography and Mineralogy 14 (2006) 3-26 (In Persian).
8. [8] Hosseini R., Karimpour M.H., Malekzadeh Shafaroudi A., "Petrography, geochemistry, U-Pb dating and Sr-Nd isotopes of igneous rocks in Tannurjeh porphyry Au-Cu prospect area (NE Kashmar)", Petrology 33 (2018) 45-70 (In Persian).
9. [9] Karimpour M.H., Saadat S., Malekzadeh Shafaroudi A., "Geochemistry, petrology and mineralization of Tanurjeh Au-Cu porphyry", Journal of Science (University of Tehran) 33 (2005) 173-185(In Persian).
10. [10] Yousefi L., Karimpour M.H., Haidarian Shahri M.R., "Geology, mineralogy, fluid inclusion thermometry and ground magnetic of Shahrak Magnetite-Specularite Cu-Au prospecting area, Torbat-e-Heydariyeh, Iran", Iranian Journal of Crystallography and Mineralogy 16 (2008) 505-516 (In Persian).
11. [11] Alaminia Z., Karimpour M.H., Heydariyan Shahri., M.R; "Geology, alteration, mineralization and geochemical studies in Kalate teymur area, northeastern Iran", Journal of Economic Geology 2 (2010-2011) 215-234 (In Persian).
12. [12] Almasi A., Karimpour M.H., Ebrahimi Nasrabadi Kh., Rahimi B., KlÖtzli U., Francisco Santos J.,"Geology, mineralization, U-Pb dating and Sr-Nd isotope geochemistry of intrusive bodies in northeast of Kashmar", Journal of Economic Geology 7 (2015) 69-90 (In Persian).
13. [13] Almasi A., Karimpour M.H., Hattori K., Santos J.F., Ebrahimi Nasrabadi Kh., Rahimi B., " Au bearing magnetite mineralizaion in Kashmar (alteration, mineralization geochemistry, geochemistry and fluid inclusions); and Tectono-magmatism of northeast of Iran", Journal of Economic Geology 8 (2016-2017) 569-592 (In Persian).
14. [14] Taghadosi H., Malekzade Shafaroudi A., "Mineralogy, alteration, geochemistry and fluid inclusion study of iron oxide-copper mineralization in Namagh area, northeast of Kashmar", Iranian Journal of Crystallography and Mineralogy 26 (2018) 541-554 (In Persian). [DOI:10.29252/ijcm.26.3.541]
15. [15] Taghadosi H., Malekzade Shafaroudi A., "Evidence of probable Cu-Au mineralization in Namagh area, Northeast of Kashamr: Alteration, mineralization, geochemistry and fluid inclusion studies", Scientific Quarterly Journal Geosciences 108 (2018) 105-114 (In Persian).
16. [16] Boroozi niyat B., Malekzade Shafaroudi A., Heydariyan Shahri., M.R., "Mineralogy, geochemistry and fluid inclusion study in Zaveh copper occurrence, southeast of Torbat-e-Heydarieh", Iranian Journal of Crystallography and Mineralogy 27 (2019) 3-18 (In Persian). [DOI:10.29252/ijcm.27.1.3]
17. [17] Sahandi M.R., Soheily M., Sadeghi M., Delavar S.T., Jafari Rad A., "Geological Map of Iran", Scale 1:1,000,000, Geological Survey of Iran, Tehran, Iran. (2002).
18. [18] Lecumberri-Sanchez P., Steel-MacInnis M., Bodnar R.J., "A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance", Geochim Cosmochim Acta 92 (2012) 14-22. [DOI:10.1016/j.gca.2012.05.044]
19. [19] Steele-MacInnis M., Lecumberri-Sanchez P., Bodnar R.J., "HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl", Computer in Geosciences 49 (2012) 334-337. [DOI:10.1016/j.cageo.2012.01.022]
20. [20] Shafaii Moghadam H., Li X. H., Ling X. X., Santos J. F., Stern R. J., Li Q. L., Ghorbani G., "Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U-Pb zircon geochronology and isotope geochemistry", Lithos 216-217 (2015) 118-135. [DOI:10.1016/j.lithos.2014.12.012]
21. [21] Ramezani J., Tucker R.D., "The Saghand region, central iran: U-Pb geochronology,petrogenesis and implications for Gondwana tectonics", American Journal of Science 303 (2003) 622-625. [DOI:10.2475/ajs.303.7.622]
22. [22] Javadi H. R., Ghassemi M. R., Shahpasandzadeh M., Guest B., Ashtiani M. E., Yassaghi A., Kouhpeyma, M., "History of faulting on the Doruneh Fault System: Implications for the kinematic changes of the Central Iranian Microplate", Geological Magazine 150 (2013) 651-672. [DOI:10.1017/S0016756812000751]
23. [23] Kholghi Khasraghi M.H., "Geological Map of the Torbat-e-Heydarieh", Scale 1:100000, Geological Survrey of Iran (1996).
24. [24] Woodcock N.H., Omma J.E., Dickson J.A.D., "Chaotic breccia along the Dent Fault, NW England: implosion or collapse of a fault void?", Journal of the Geological Society 163 (2006) 431-446. [DOI:10.1144/0016-764905-067]
25. [25] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
26. [26] Chavez W.X., "Supergene Oxidation of Copper Deposits: Zoning and Distribution of Copper Oxide Minerals", Society of Economic Geology Newsletter 41 (2000).
27. [27] Roedder. E., "Fluid inclusions", Reviews in Mineralogy 12 (1984) 644. [DOI:10.1515/9781501508271]
28. [28] Sheppherd T.J., Rankin A.H., Alderton D.H.M., "A Practical Guide to Fluid Inclusion Studies", Blackie and Son (1985) 239.
29. [29] Hedenquist J.W., Henley R.W., "The importance of CO2 on freezing point measurements of fluid inclusions: Evidence from active geothermal systems and implications for epithermal ore deposition", Economic Geology 80 (1985) 1379-1406. [DOI:10.2113/gsecongeo.80.5.1379]
30. [30] Beane R.E., "The Magmatic-Meteoric Transition. Geothermal Resources Council", Special Report 13 (1983) 245-253.
31. [31] Sverjensky D.A., "The origin of a Mississippi Valley-type deposit in the Viburnum Trend, Southeast Missouri", Economic Geology 76 (1981) 1848-1872. [DOI:10.2113/gsecongeo.76.7.1848]
32. [32] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55(2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
33. [33] Rossetti P., Colombo F., "Adularia-sericite gold deposits of Marmato Caldas, Colombia : field and petrographic data", Geological Society of London, Special Publications 155 (1999) 167-182. [DOI:10.1144/GSL.SP.1999.155.01.13]
34. [34] Seward T.M., Barnes H.L., "Metal transport by hydrothermal ore fluids", in Barnes H.L., "Geochemistry of hydrothermal ore deposits", New York, John Wiley and Sons (1997) 435-486.
35. [35] Pirajno F., "Hydrothermal processes and mineral system", New York, Springer Science (2009) 1273 pp. [DOI:10.1007/978-1-4020-8613-7]
36. [36] So C.S., Zhang D.Q., Yun S.T., Li D.X., "Alteration-mineralization zoning and fluid inclusions of the high sulfidation Eepithermal Cu-Au mineralization at Zijinshan, Fujian province, China", Economic Geology 93 (1998) 961-980. [DOI:10.2113/gsecongeo.93.7.961]
37. [37] Murales Ruano S., Carrillo Rosua F., Hach Ali P.F., De La Fuente Chacon., F., Contreras Lopez E., "Epithermal Cu-Au mineralization in the Palai Islica deposit, Almeria, southeastern Spain: fluid-inclusion evidence for mixing of fluids as a guide to gold mineralization", The Canadian Mineralogist 38 (2000) 553-565. [DOI:10.2113/gscanmin.38.3.553]
38. [38] Javidi Moghaddam, M., Karimpour, M.H., Ebrahimi Nasrabadi, K., Malekzadeh Shafaroudi, A., Haidarian Shahri, M.R., "Mineralogy, geochemistry, fluid inclusion and oxygen isotope investigations of epithermal Cu ± Ag veins of the Khur area, Lut block, eastern Iran", Acta Geologica Sinica (English Edition), 92 (2018) 1-1. [DOI:10.1111/1755-6724.13596]
39. [39] Mehrabi B., Tale Fazel E., Ghasemi Siani M., Eghbali M.A., "The study on genesis of Glojeh Cu-Au vein deposit (north of Zanjan) based on evidence from mineralogy, geochemistry and fluid inclusion", Journal of Science. University of Tehran 35 (2007) 185-199.
40. [40] Fernandez H.E., Damasco F.V., "Gold deposition in the Baguio Gold District and its relationship to regional geology", Economic Geology 73 (1979) 1852-1868. [DOI:10.2113/gsecongeo.74.8.1852]
41. [41] White N.C., Hedenquist J.W., "Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration", Journal of Geochemical Exploration 36 (1990) 445-474. [DOI:10.1016/0375-6742(90)90063-G]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb