Volume 26, Issue 4 (1-2019)                   www.ijcm.ir 2019, 26(4): 1013-1026 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaili L, Gholizadeh A. Effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of bismuth ferrite. www.ijcm.ir. 2019; 26 (4) :1013-1026
URL: http://ijcm.ir/article-1-1207-en.html
Damghan University
Abstract:   (60 Views)
In this research, the effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of the bismuth ferrite nanoparticles prepared by nitrate-citrate method have been investigated. The structural and magnetic properties were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and vibrating-sample magnetometer at room temperature. An important role in the synthesis of pure bismuth ferrite is played by temperature and excess bismuth oxide. Analysis of XRD patterns and FTIR data indicate that to obtain the pure bismuth ferrite, a stoichiometric amount of bismuth nitrate mole in solution and sintering at temperature 650 °C is needed. The magnetic and photocatalytic results have showed that the presence of the impurity phases led to strong ferromagnetic behavior in samples, but has a negative effect on the photocatalytic properties of bismuth ferrite.
Full-Text [PDF 117 kb]   (18 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/12/29 | Accepted: 2018/12/29 | Published: 2018/12/29

1. [1] Khedri H., Gholizadeh A., Malekzadeh A., "Effect of annealing temperature on structural, optical and catalytic properties of Cu-Zn ferrite nanoparticles", www.ijcm.ir. (2016) 24 (2) :297-[2] Amighian J., Mozaffari M., "Dependence uf Magnetic Properties of Barium Ferrite un Additives and Microstructure", www.ijcm.ir. 1997; 5 (2) :73-82.
2. [3] Haanpour A., Amighian J., Mozaffari M., "preparation of ultrafine Bi-substituted Yttrium Iron Garnet (Bi-YIG)", www.ijcm.ir. 2004; 12 (1):23-30
3. [4] Rezaei M., Sanavi Khohnood D., Dehghan E., "Study of structural and magnetic properties of BiFeO3 nanoparticles co-doped with Ba and La", www.ijcm.ir. 2016; 24 (3) :563-572.
4. [5] Schmid H., "Multi-ferroic magnetoelectrics", Ferroelectrics 162 (1994) 317–338. [DOI:10.1080/00150199408245120]
5. [6] Smolensky G.A., Isupov V.A., Agronovskaya A.I., "New ferroelectrics of complex composition of the type, A2+2(BI+2 BII+5)O6", Soviet physics, Solid state 1 (1959) 150-151.
6. [7] Wang J., Zheng H., Nagarajan V., Liu B., Ogale S. B., Viehland D., Venugopalan V., Schlom D. G., Wutting M., Ramesh R., Neaton J. B., Waghmare U. V., Hill N. A., Rabe K. M., Science, 299 (2003) 1719 [DOI:10.1126/science.1080615]
7. [8] Lebeugle D., Colson D., Forget A., Viret M., "Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields", Applied Physics Letters 91 (2007) 022907. [DOI:10.1063/1.2753390]
8. [9] Satoh H., Koseki S.i., Takagi M., Chung W.Y., Kamegashira N., "Heat capacities of LnCrO3 (Ln=rare earth)", Journal of Alloys and Compounds 259 (1997) 176. [DOI:10.1016/S0925-8388(97)00053-4]
9. [10] Ruette B., Zvyagin S., Pyatakov A. P., Bush A., Li J. F., Belotelov V. I., Zvezdin A. K., Viehland D., "Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order", Physical Review B. 69 (2004) 064114. [DOI:10.1103/PhysRevB.69.064114]
10. [11] Wang J., Neaton J. B., Zheng H., Nagarajan V., Ogale S. B., Liu B., Viehland D., Vaithyanathan V., Schlom D. G., Waghmare U. V., Spaldin N. A., Rabe K. M., Wutting M., Ramesh R., "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures", Science 299 (2003) 1719. [DOI:10.1126/science.1080615]
11. [12] Wei W., Xuan H., Wang L., Zhang Y., Shen K., "The magnetoelectric coupling in rhombohedral–tetragonal phases coexisted Bi0.84Ba0.20FeO3", Physica B:Condensed mater 407 (2012) 2243.
12. [13] Gao T., Chen Z., Zhu Y., Niu F., Huang Q., Qin L., Sun X., HuangY., "Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property", Materials Research Bulletin 59 (2014) 6-12. [DOI:10.1016/j.materresbull.2014.06.022]
13. [14] Jia De-Ch., Xu J.-H., Ke H., Wang W., Zhou Y., "Structure and multiferroic properties of BiFeO3 powders", Journal of the European Ceramic Society 29 (2009) 3099–3103. [DOI:10.1016/j.jeurceramsoc.2009.04.023]
14. [15] Wang X., Zhang Y., Wu Zh., "Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles bytartaric acid-assisted sol–gel strategy", Materials Letters 64 (2010) 486–488. [DOI:10.1016/j.matlet.2009.11.059]
15. [16] Arora M., Sati P.C., Chauhan S., Chhoker S., Panwar A.K., Kumar M., "Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route", Journal of Superconductivity and Novel Magnetism 26 (2013) 443–448. [DOI:10.1007/s10948-012-1761-4]
16. [17] Li Sh., Lin Y.-H., Zhang B.-P., Wang Y., Nan C.-W., "Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors", The Journal of Physical Chemistry C 11 (2010) 2903–2908. [DOI:10.1021/jp910401u]
17. [18] Shabani S., Mirkazemi S.M., Masoudpanah S.M., Abadi P.T.D., "Synthesis and Characterization of Pure Single Phase BiFeO3 Nanoparticles by the Glyoxylate Precursor Method", Journal of Superconductivity and Novel 27 (2014) 2795–2801. [DOI:10.1007/s10948-014-2713-y]
18. [19] Layck S., Verma H. C., "Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by a novel citrate combustion method", Advanced Materials Letters 3 (2012) 533-538. [DOI:10.5185/amlett.2012.icnano.242]
19. [20] Naeimi A.S., Dehghan E., Sanavi Khoshnoud D., Gholizadeh A., "Enhancment of ferromagnetism in Ba and Er co-doped BiFeO3 nanoparticles", Journal of Magnetism and Magnetic Materials 393 (2015) 502–507. [DOI:10.1016/j.jmmm.2015.06.016]
20. [21] Gholizadeh A., "La1-xCaxCo1-yMgyO3 nano-perovskites as CO oxidation catalysts: structural and catalytic properties", Journal of the American Ceramic Society 100 (2017) 859-866. [DOI:10.1111/jace.14602]
21. [22] Gholizadeh A., Malekzadeh A., "Structural and redox features of La0.7Bi0.3Mn1-xCoxO3 nanoperovskites for ethane combustion and CO oxidation", International Journal of Applied Ceramic Technology 14 (2017) 404–412. [DOI:10.1111/ijac.12650]
22. [23] Gholizadeh A., Yousefi H., Malekzadeh A., Pourarian F., "Calcium and strontium substituted lanthanum manganite–cobaltite [La1-x(Ca, Sr)xMn0.5Co0.5O3] nano-catalysts for low temperature CO oxidation", Ceramics International 42 (2016) 12055-12063. [DOI:10.1016/j.ceramint.2016.04.134]
23. [24] Gholizadeh A, Malekzadeh A, Ghiasi M., "Structural and magnetic features of La0.7Sr0.3Mn1-xCoxO3 nano-catalysts for ethane combustion and CO oxidation", Ceramics International 42 (2016) 5707–5717. [DOI:10.1016/j.ceramint.2015.12.101]
24. [25] Gholizadeh A., Jafari E., "Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere", Journal of Magnetism and Magnetic Materials 422 (2017) 328–36. [DOI:10.1016/j.jmmm.2016.09.029]
25. [26] Lisnevskaya I. V., Petrova A.V., "Low-Temperature Synthesis of the Multiferroic Compound BiFeO3", Inorganic Materials 45 (2009) 930–934. [DOI:10.1134/S0020168509080202]
26. [27] Nazemian M., Sanavi Khoshnood D., Sanavi Khoshnood R., "Study of structural, Microstructural and magnetic properties of BiFeO3 nanoparticles co-doped with Y and La", Volume 10, Issue 34, Spring 2015, Page 83-90.
27. [28] Gholizadeh A., "Structural and magnetic investigations of LaMn1-xCoxO3 (x = 0.00, 0.25, 0.50, 0.75, 1.00) perovskite nano-particles", www.ijcm.ir. 2015; 22 (4) :599-606.
28. [29] Arora Manisha, et al. "Structural, optical and multiferroic properties of BiFeO3 nanoparticles synthesized by soft chemical route", Journal of superconductivity and novel magnetism 26.2 (2013): 443-448. [DOI:10.1007/s10948-012-1761-4]
29. [30] Gholizadeh A., "A comparative study of physical properties in Fe3O4 nanoparticles prepared by coprecipitation and citrate methods", Journal of the American Ceramic Society 100 (2017) 1–12. [DOI:10.1111/jace.14496]
30. [31] A. Gholizadeh, A. Malekzadeh, M. Ghiasi, "Structural, magnetic and catalytic properties of Co substituted manganite nano-perovskites", Bulgarian Chemical Communications 48 (2016) 430– 439.
31. [32] Dey K., Majumdar S., Giri S., "Structural correlation to magnetodielectricity and coercivity at room temperature in multiferroic Bi0.7Ba0.3-xPbxFeO3", Acta Materialia 61 (2013) 379. [DOI:10.1016/j.actamat.2012.10.004]
32. [33] Crini G., Gimbert F., Robert C., Martel B., Adam O., Morin-Crini N., De Giorgi F., Badot P.M., "The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: Batch studies", Journal of Hazardous Materials, 153 (2008) 96-106. [DOI:10.1016/j.jhazmat.2007.08.025]

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb