Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 885-894 | Back to browse issues page

DOI: 10.29252/ijcm.25.4.885

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naderi M, zargarshoshtari M, kazeminejad I. Investigation of precursor solution concentration effect on morphology and optical properties of zinc oxide nanorods for polymer solar cells application. www.ijcm.ir. 2018; 25 (4) :885-894
URL: http://ijcm.ir/article-1-1004-en.html

Shahid Chamran University of Ahvaz
Abstract:   (171 Views)
In this research, ZnO nanorods were grown via hydrothermal method on the glass substrate. The effect of precursor and the thickness of the seed layer on the structural and optical properties of grown ZnO nanorods were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-vis spectroscopy. The XRD patterns indicated that the nanorods had wrutzite hexagonal crystalline structure with orientation of [002]. FESEM images clearly revealed that the ZnO nanorods with different solution concentration on different seed layers and precursor solution concentration were grown on substrate glass. The ZnO nanorods with solution concentration of 50 mM and 10 times the seed layer deposition are the better morphology and more optical transmittance in the range of visible. So this sample could be a suitable candidate for electron transport layer on inverted polymer solar cells.
Full-Text [PDF 120 kb]   (45 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/25 | Accepted: 2017/11/25 | Published: 2017/11/25

1. [1] Park H. L., Lee K. H., Kumar B., Jeong K. S. W., Kim S. W., "Inverted Organic Solar Cells with ZnO Thin Films Prepared by Sol–Gel Method", Journal of Nanoelectronics and Optoelectronics 5 (2010) 1-4. [DOI:10.1166/jno.2010.1067]
2. [2] Huang J., Yinb Z., Zheng Q., "Applications of ZnO in organic and hybrid solar cells", Energy & Environmental Science 4 (2011) 3861-3877. [DOI:10.1039/c1ee01873f]
3. [3] Wang J. C., Weng W. T., Tsai,M. Y., Lee M. K., Horng S. F., Perng T. P., Kei C. C., Yuc C. C., Meng H. F., "Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer", Journal of Materials Chemistry 20 (2010) 862–866. [DOI:10.1039/B921396A]
4. [4] Kim M. S., Yim K. J., Kim D. Y., Kim S., Nam G., Lee D. Y., Kim S. O., Kim J. S., Kim J. S., Son J. S., Leem J. Y., "Growth and Characterization of Seed Layer-Free ZnO Thin Films Deposited on Porous Silicon by drothermal Method", Electronic Materials Letters 8(1) (2012) 75-80. [DOI:10.1007/s13391-011-0130-y]
5. [5] Kuroyanagi A., "Properties of aluminum-doped ZnO thin films grown by electron beam evaporation", Japanese Journal of Applied Physics 28 (1989) 219. [DOI:10.1143/JJAP.28.219]
6. [6] Asmar R. Al., Zaouk D., Bahouth Ph., Podleki J. Foucaran A., "Characterization of electron beam evaporated ZnO thin films and stacking ZnO fabricated by e-beam evaporation and rf magnetron sputtering for the realization of resonators", Microelectronic Engineering 83 (2006) 393-398. [DOI:10.1016/j.mee.2005.10.010]
7. [7] Bedia F. Z., Bedia A., Maloufi N., Aillerie M., Genty F., Benyoucef B., "Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique", aJournal of Alloys and Compounds 616 (2014) 312–318. [DOI:10.1016/j.jallcom.2014.07.086]
8. [8] Ajili M., Castagné M., Turki N. K., "Study on the doping effect of Sn-doped ZnO thin films", Superlattices and Microstructures 53 (2013) 213–222. [DOI:10.1016/j.spmi.2012.10.012]
9. [9] Ye Z. B., Lu H. L., Geng Y., Gu Y. Z., Xie Z. Y., Zhang Y., Sun Q. Q., Ding S. H., Zhang D. W., "Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition", Nanoscale Research Letters 8 (2013) 108. [DOI:10.1186/1556-276X-8-108]
10. [10] Wang F. H., Chang H. P., Tseng C. C., Chia-Cheng Huang C. C., "Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering", Surface & Coatings Technology 205 (2011) 5269–5277. [DOI:10.1016/j.surfcoat.2011.05.033]
11. [11] Silva E. P., Chavesl M., Silva G. J., Arruda L. B., Paulo Noronha Lisboa-Filho P. N., Durrant S. F., Bortoleto J. R., "Al-Doping Effect on the Surface Morphology of ZnO Films Grown by Reactive RF Magnetron Sputtering", Materials Sciences and Applications 4 (2013) 761-767. [DOI:10.4236/msa.2013.412096]
12. [12] Pauporte T., Lincot D., "Electrodeposition of Semiconductors for Optoelectronic Devices: Results on Zinc Oxide", Electrochimica Acta 45 (2000) 3345-3353. [DOI:10.1016/S0013-4686(00)00405-9]
13. [13] Fahoume M., Maghfoul O., Aggour M., Hartiti B., Chraibi F., Ennaoni A., "Growth and characterization of ZnO thin films prepared by electrodeposition technique", Solar Energy Materials and Solar Cells 90 (2006) 1437-1444. [DOI:10.1016/j.solmat.2005.10.010]
14. [14] Huang Y., Yin Z., Zheng Q., "Applications of ZnO in organic and hybrid solar cells", .Energy & Environmental Science 4 (2011) 3861-3877. [DOI:10.1039/c1ee01873f]
15. [15] Yuan Z., "Synthesis of ZnO nanocrystal by thermal decomposition for inverted polymer solar cell application", Journal of Materials Science: Materials in Electronics 26 (2015) 1776–1779. [DOI:10.1007/s10854-014-2607-6]
16. [16] Tong F., Kim K., Wang Y., Thapa R., Sharma Y., Modic A., Ahyi A. C., Issacs-Smith T., Williams J., Ahn H., Park H., Kim D. J., Lee S., Lim E., Lee K. K., Park M., "Growth of ZnO Nanorod Arrays on Flexible Substrates:Effect of Precursor Solution Concentration", International Scholarly Research Network ISRN Nanomaterials (2012) 7.
17. [17] Echresh A., Abbasi M. A., Zargar Shoushtari M., Farbod M., Nur O., Willander M., "Optimization and characterization of NiO thin film and the influence of thickness on the electrical properties of n-ZnO nanorods/p-NiO heterojunction", Semiconductor Science and Technology. 29 (2014) 115009-115014. [DOI:10.1088/0268-1242/29/11/115009]
18. ]18[ زرگر‌شوشتری م.، پورمقدم ا .، فربد م.، "ساخت و بررسی خواص ساختاری، اپتیکی و مغناطیسی نانوذرات Zn1-xNixO"، مجله بلورشناسی و کانی شناسی ایران، شماره 2 (1395) ص 16-9.
19. [19] Patil G. R., Gaikwad R. S., Shelar M. B., Mane R. S., Hand S. H., Pawar B. N., "Role of concentration and temperature on well-aligned ZnO nanorod by lowtemperature wet chemical bath deposition method", Archives of Physics Research 3(5) (2012) 401-406.
20. [20] Arpavate W., Chungchote S., Laosiripoj N., Wootthikanokhan J., Sgawa T., "ZnO Nanorod Arrays Fabricated hydrothermal method using different thicknesses of seed layers for applications in hybrid photovoltaic cells", Sensor and materials 28(5) (2016) 403-408.
21. [21] Nirmal Peiris T. A., Alessa H., S. Sagu. J., Bhatti J. A., Isherwood P., Upul Wijayantha K. G., "Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells", Journal of Nanoparticle Research (15) (2013) 15:2115.
22. [22] Yin Y. T., Que W. X., Kam C. H., "ZnO nanorods on ZnO seed layer derived by sol–gel process", Journal of Sol-Gel Science and Technology 53 (2010) 605–612. [DOI:10.1007/s10971-009-2138-4]
23. [23] Shariffudin S. S., Salina M., Herman S. H., "Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles", Transection on Electrical and Electronic Materials 13(2) (2012) 102-105. [DOI:10.4313/TEEM.2012.13.2.102]
24. [24] Anil Kumar G., Ramana Reddy M.V., Narasimha Reddy K., "Structural, Optical and Electrical Characteristics of Nanostructured ZnO Thin Films with various Thicknesses deposited by RF Magnetron Sputtering", Research Journal of Physical Sciences 1(6) (2013) 17-23.

Add your comments about this article : Your username or Email:
Write the security code in the box

© 2015 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb