Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 845-856 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

torkiyan A, shakiba S, mazaheri S A, ghasempour M. Tourmalinization in Roudgaz granitoid body, south of Bajestan, Khorasan-Razavi . www.ijcm.ir. 2018; 25 (4) :845-856
URL: http://ijcm.ir/article-1-1000-en.html
Bu-Ali Sina University
Abstract:   (990 Views)
Roudgaz granitoid is located in south of Bajestan. In this granitoid body, tourmaline occurred in two forms, as luxullianite and as veins of quartz-tourmaline with a 30 cm width. Based on petrography and electron microprobe analyses data, these tourmalines are schorl-dravite- foitite in composition, with a tendency toward schorl end member, and belongs to alkali and vacancies groups. In comparison with the ideal composition of schorl- dravite, many of tourmaline samples have high Al contents and alkali – site vacancies. The increase of the amount of octahedral aluminum reflects a combination of substitutions in tourmaline involving deprotonation (O-OH exchange) and vacancies in the alkali-site and therefore they have originated from magmatic source. In contrast, the presence of zoning, its occurrence as vein form, having a high Mg compared to samples with high  Fe and tendency away from alkali- deficient and proton-deficient tourmaline vectors, shows that tourmaline in the luxullianite as well as the vein tourmalines are  hydrothermal in origin. So, based on the evidence described above, tourmaline veins have formed by interaction of boron on-rich magmatic-hydrothermal fluids of the origin of mass granitoid rocks along with various quartz-tourmaline and metapelitic-metapesamitic host rocks.
Full-Text [PDF 129 kb]   (274 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/25 | Accepted: 2017/11/25 | Published: 2017/11/25

1. [1] Raith J. G., Riemer N., Schoner N., Meisel T., "Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia", Contribution to Mineralogy and Petrology., 147, (2004) 91-109. [DOI:10.1007/s00410-003-0548-9]
2. [2] Burianek D., Novak M., "Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Examples from the Bohemian Massif, Czech Republic". Lithos, 95 (2) (2007) 148–164. [DOI:10.1016/j.lithos.2006.07.006]
3. [3] Griffin W.L. et al., "Trace elements in tourmalines from massive sulfide deposits and tourmalines: geochemical controls and exploration applications". Economic geology, 91, (1996) 657-675. [DOI:10.2113/gsecongeo.91.4.657]
4. [4] Dutrow B., Henry D. J., "Complexly zoned fibrous tourmaline: A record of evolving magmatic and hydrothermal fluids", Canadian Mineralogist, 38, (2000) 131-143. [DOI:10.2113/gscanmin.38.1.131]
5. [5] Stokline J., "Structural history and Tectonics of Iran; a review", American Association of petroleum Geologist Bulletin, 52, (1968) 1229-1258.
6. ]6[ نبوی م.، "دیباچه‌ای بر زمین‌شناسی ایران"، انتشارات سازمان زمین‌شناسی کشور،(1355)، 109ص.
7. ]7[ آقانباتی ع.، "زمین‌شناسی ایران"، سازمان زمین شناسی و اکتشافات معدنی کشور، (1383)، 606 ص.
8. [8] Camp V., Griffis R., "Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran", Lithos, 15, (1982), 221-239. [DOI:10.1016/0024-4937(82)90014-7]
9. [9] Tarkian M., Lotfi M., Baumann A., "Tectonic, magmatism and the formation of mineral deposits in central Lut, East of Iran", Geological Survey of Iran, Rep. No. 57, (1983), 357-383.
10. [10] Tirrul R., Bell I. R., Griffis R. J., Camp V. E., "The Sistan suture zone of eastern Iran", Geol. Soc. Am. Bull 94, (1983), 134-156. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2 [DOI:10.1130/0016-7606(1983)942.0.CO;2]
11. [11] Jung D., Keller J., Khorasani R., Marcks Chr., Baumann A., Horn P., "Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran", Ministry of mines and metals, GSI, geodynamic project (geotraverse) in Iran, No. 51, (1983), 285-336.
12. [12] پورلطیفی ع.، "نقشه زمین‌شناسی 100000/1 فردوس، سازمان زمین‌شناسی کشور "، (1382).
13. [13] محمدزاده لاری م.، "بررسی پترولوژی سنگ‌های پلوتونیکی شرق و جنوب شرق بجستان"، پایان نامه کارشناسی ارشد دانشگاه شهید بهشتی، (1376)، 130ص.
14. [14] Eftekhar-Nejad J., Ruttner A., "Geological sheet map of Ferdows, 1/250000 scale", Geological Survey of Iran, Tehran, (1977).
15. [15] Bullen T.D., Clynne M.A., "Trace element and isotopic constraints on magmatic evolution at Lassen Volcanic Center, California", Journal of Geophysical Research, vol. 95(1990) p. 19 671-19 691
16. [16] شکیبا س.، "مطالعه کانی‌شناختی، ژئوشیمیایی و پترولوژیکی توده‌های آذرین رودگز بالا (جنوب شرقی بجستان"، پایان نامه کارشناسی ارشد دانشگاه فردوسی مشهد، (1392)،119ص.
17. [17] Shonosuke O.H.T.A., "Diffusion- Limited Aggregation and Crystal growth". KTK Scientific publishers (1991) 220-233.
18. [18] Keith H.D., Padden F.J., "A phenomenological theory of spherolite crystallization", Journal of Applied Physics. 34, (1963) 2409-2421. [DOI:10.1063/1.1702757]
19. [19] Dini A., Crretti A., Innocenti F., Rocchi S., Westerman D. S., "Sooty sweat stains or tourmaline spots? The Argonauts at Elba Island (Tuscany) and the spread of Greek trading in the Mediterranean Sea", In Piccardi, L., Masse, W.B. (eds.) Myth and Geology, Geological Society, London, Special Publications 273 (2007) 227-243. [DOI:10.1144/GSL.SP.2007.273.01.18]
20. [20] Balen D., Broska I., "Tourmaline nodules: products of devolatilization within, the final evolutionary stage of granitic melt", Geological Society, London, Special Publication 350 (2011), 53-63. [DOI:10.1144/SP350.4]
21. [21] Hawthorne F. C., Henry D. J., "Classification of the minerals of the tourmaline group". European journal of mineralogist 11 (1999) 201-215. [DOI:10.1127/ejm/11/2/0201]
22. [22] Yavuz F., Gultekin A.H., Karakaya M.C., "CLASTOUR: a comuter program for classification of the minerals of the tourmaline group", Computers Geosciences 28(2002) 1017-1036. [DOI:10.1016/S0098-3004(02)00012-2]
23. [23] Darrell J., Henry Milan novak (Chairman), Frank C., Hawthorne Andreas Ertl., Barbara L., Dutrow Pavel Uher, Federico Pezzotta, "Nomenclature of the tourmaline-supergrop minerals", American Mineralogist, volume 96. Pages 895-913 (2011).
24. [24] Henry D. J., Dutrow B.L., "Compositional zoning and element partitioning in nikeloan tourmaline from a metamorphosed karst bauxite from Samos, Greece", American mineralogist, 86, (2001) 1130-1142. [DOI:10.2138/am-2001-1002]
25. [25] Burt D.M., "Vector representation of tourmaline compositions". American mineralogist, 74 (1989) 826-839.
26. [26] Bleeken G. V. D., Corteel C., Haute P. V. D., "Epigenetic to low-grade tourmaline in the Gdoumont metaconglomerates (Belgium): A sensitive probe of its chemical environment of formation", Lithos 95 (2) (2007) 165–176. [DOI:10.1016/j.lithos.2006.07.005]
27. [27] Pirajino F., Smithies R. H., "The FeO / (FeO + MgO) ratio of tourmaline: A useful indicator of spatial variations in granite-related hydrothermal mineral deposits", Journal of geochemical explorations 42 (1992) 371-381.
28. [28] Trumbull R.B., Chaussidon M., "Chemical and boron isotopic composition of magmatic and hydrothermal tourmaline from the Sinceni granite–pegmatite system in Swaziland". Chemical Geology 153 (1999) 125–137. [DOI:10.1016/S0009-2541(98)00155-7]
29. [29] Deer W.A., Howie R.A., Zussrnam J., "An introduction to the rock-forming minerals", Longman Group UK Limited (1992).
30. [30] London D., Manning D.A.C., "Chemical variation and significance of tourmaline from Southwest England", Economic Geology, 90 (1995) 495– 519. [DOI:10.2113/gsecongeo.90.3.495]
31. [31] Grew E. S., Anovitz L. M., "Boron mineralogy, petrology and geochemistry", Reviews in mineralogy, 33 (1997).

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb