Volume 30, Issue 4 (12-2022)                   www.ijcm.ir 2022, 30(4): 6-6 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amirian A, Siahcheshm K. Magnetite geochemistry an approach to determining the physicochemical conditions of Alam- Kandy iron skarn formation, West Mahneshan, Zanjan province. www.ijcm.ir 2022; 30 (4) :6-6
URL: http://ijcm.ir/article-1-1813-en.html
Abstract:   (848 Views)
Alam-Kandy iron skarn lies at the contact margin of a granodiorite stock with limestone and dolomites of Soltanieh Formation. Anhydrous prograde calc-silicate assemblages (garnet, diopside, wollastonite) were replaced by a series of hydrous calc-silicates (serpentine, epidote, tremolite-actinolite) and/or quartz, calcite, magnetite, hematite, and pyrite. During this event, magnetite lenses (±hematite and pyrite) are formed with various textures such as massive, banded, scattered grains and veins at the vicinity of the intrusion body and the contact zones. According to this study, The geochemistry of trace elements of magnetite is variable under the influence of progressive and regressive stages of skarn formation and wall rock composition, and consistant with the indicators of magnetite formation in the (magnesium) skarn environment. These include factors such as: 1) high concentration of Mg (1 to 1.5 %), low values of Cr (<10 ppm), Ti (<0.01%) and insignificant incompatible elements such as Ag (0.5 ppm) 1 <), Rb (ppm 1 <), Sb (ppm 1 <) and Na (less than 0.1%) in magnetite; 2) significant positive correlation between Ti and V and the position of the samples in the Ti+V versus Ca+Al+Mn and Ni/(Cr + Mn) diagrams. High temperature vein-veinlet magnetites have more cobalt content than the replacement magnetites syn-deposited by sulfide minerals (retrograde stage), indicating that in the Alam Kennedy skarn system, the concentration of cobalt in the magnetite is controlled by the abundance of sulfide mineral deposits.

Full-Text [PDF 5821 kb]   (315 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Karimzadeh Somarin A., Moayyed M.,"Granite- and gabbrodiorite-associated skarn deposits of NW Iran", Ore Geology Reviews, 20 (2002) 127-138. [DOI:10.1016/S0169-1368(02)00068-9]
2. [2] Meinert L., "Variability of skarn deposits: Guides to exploration", Revolution in the earth sciences, (1983) 301-16.
3. [3] Zhao W.W., Zhou M.F., "In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China", Ore Geology Reviews 65 (2015) 872-883. [DOI:10.1016/j.oregeorev.2014.09.019]
4. [4] Dupuis C., Beaudoin G., "Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types", Mineral. Deposita 46 (4) (2011) 319-335. [DOI:10.1007/s00126-011-0334-y]
5. [5] McQueen K.G., Cross A.J., "Magnetite as a geochemical sampling medium: application to skarn deposits", The State of the Regolith, Geological Society of Australia Special Publication 20 (1998) 194-199.
6. [6] Ghorbani M., "Economic geology of Iran, mineral deposits and natural resources", Iranzamin publication (2007) 569 p.
7. [7] Azizi H., "Petrography and petrogenesis of Shahrak iron ore deposit, Takab", M.sc. thesis, University of Sfahan (1992).
8. [8] Sadeghi M., Lotfi M., "Comparison of iron deposit of Shahrak 1 in the northwest of Bijar with different types of iron deposits", 33rd Conference of Earth Sciences, Geological Survey of Iran (2014).
9. [9] Mohammadi S., Mehdikhani b., Imam Alipour A., "Study of mineralogy, petrography and geochemistry of Arjin iron deposit", 34th Earth Sciences Conference, Geological Survey and Mineral Exploration Organization (2015).
10. [10] Mohammadi F., Moghaddasi S.J., Ebrahimi M., "Study of Shatnasi mineralogy, geochemistry and formation of Gozel Darreh iron deposit (southeast of Zanjan)", M.Sc. Thesis, Payame Noor University of Tehran (2013).
11. [11] Hamidvand M., "Mineralogy, Geochemistry and Genesis of Incheh Rahbari Iron Ore, South Zanjan", M.Sc. Thesis, Zanjan University (2015).
12. [12] Shafaeipour N., Mokhtari M.A.A., Kouhestani H., Honarmand M., "Petrology and Mineralogy of Qozlu Iron Ore, West Zanjan", 24th Conference of Iranian Crystallography and Mineralogy Association, Shahroud University of Technology (2016).
13. [13] Kalvandi F., Ebrahimi M., Mokhtari M.A.A., Kouhestani H., "Mineralogy and geochemistry of Khakriz iron deposit, southwest of Zanjan", 24th Conference of Iranian Crystallography and Mineralogy Association, Shahroud University of Technology (2016).
14. [14] Ahmadzadeh S., "Investigations on petrography, geochemistry and thermodynamics of metamorphic rocks from the Alam Kandi area, west of Mahneshan, NW Iran", Master Thesis, Faculty of Natural Sciences, University of Tabriz (2009).
15. [15] Mehr Iron Ore Co., "Final Report on Alam Kennedy Iron Ore Mine Exploration", Industry, Mining and Trade Organization of Zanjan Province (2007).
16. [16] Dare S.A.S., Barnes S.J., Beaudoin G., Méric J., Boutroy E., Potvin-Doucet C., "Trace elements in magnetite as petrogenetic indicators", Miner Deposita 49 (2014) 785-796. [DOI:10.1007/s00126-014-0529-0]
17. [17] Liu P.P., Zhou M.F., Chen W.T., Gao J.F., Huang X.W., "In-situ LAICP-MS trace elemental analyses of magnetite: Fe-Ti-(V) oxidebearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province. SW China", Ore Geol Rev 65 (2015) 853-871. [DOI:10.1016/j.oregeorev.2014.09.002]
18. [18] Nadoll P., Angerer T., Mauk J.L., French D., Walshe J., "The chemistry of hydrothermal magnetite: a review", Ore Geol Rev 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
19. [19] Huang X.W., Gao J.F., Qi L., Meng Y.M., Wang Y.C., Dai Z.H., "Insitu LA-ICP-MS trace elements analysis of magnetite: the Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China", Ore Geol Rev 72 (2016) 746-759. [DOI:10.1016/j.oregeorev.2015.09.012]
20. [20] Righter K., Sutton S.R., Newville M., Le L., Schwandt C.S., Uchida H., Lavina B., Downs R.T., "An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt", American Mineralogist 91(2006) 1643-1656. [DOI:10.2138/am.2006.2111]
21. [21] Sievwright R.H., Wilkinson J.J., O'Neill H.S.C., Berry A.J., "Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate melts", Contrib Mineral Petrol 172 (62) (2017) 1-33. [DOI:10.1007/s00410-017-1385-6]
22. [22] Nadoll P., Mauk J.L., Hayes T.S., Koenig A.E., Box S.E., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States", Economic Geology 107 (2012) 1275-1292. [DOI:10.2113/econgeo.107.6.1275]
23. [23] Dare S.A., Barn, S.J., Beaudoin G., "Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination", Geochimica et Cosmochimica Acta 88 (2012) 27-50. [DOI:10.1016/j.gca.2012.04.032]
24. [24] Nabavi M. H., "An Introduction to the Geology of Iran", Geological Survey of Iran (1976) 109 pp (in Persian).
25. [25] Babakhani A., Qalamqash J., "Geological map 1: 100000 Takhteh Soleiman", Geological Survey of Iran (1371).
26. [26] Haldar S.K., "Introduction to mineralogy and petrology", Elsevier (2020). [DOI:10.1016/B978-0-12-820585-3.00004-1]
27. [27] Helmi F., "Skarns and Skarn deposits; With a special look at Iranian skarns", Amirkabir Publications (2009) 1- 338 (in Persian).
28. [28] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
29. [29] Ohmoto H., "Nonredox transformations of magnetite-hematite in hydrothermal systems", Econ. Geol. 98 (2003) 157-61. [DOI:10.2113/gsecongeo.98.1.157]
30. [30] Nadoll P., Angerer T., Mauk J. L., French D., Walshe J., "The chemistry of hydrothermal magnetite: A review", Ore Geology Reviews 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
31. [31] Huang X., Qi L., Meng Y., "Trace element and REE geochemistry of minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-) Fe deposit, eastern Tianshan Mountain", Mineral Deposits 32 (2013) 1188-1210.
32. [32] Hu H., Lentz D., Li J.W., McCarron T., Zhao X.F., Hall D., "Reequilibration processes in magnetite from iron skarn deposits", Economic Geology 110 (2015) 1-8. [DOI:10.2113/econgeo.110.1.1]
33. [33] Ilton E.S., Eugster H.P., "Base metal exchange between magnetite and a chloride-rich hydrothermal fluid", Geochimica et Cosmochimica Acta 53(2) (1989) 291-301. [DOI:10.1016/0016-7037(89)90381-5]

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb