Volume 27, Issue 1 (4-2019)                   www.ijcm.ir 2019, 27(1): 69-82 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alaminia Z, Razavi S M H, Mehrabi B. Chemistry and formation conditions of garnet and clinopyroxene of the Seranjic skarn deposit, Ghorveh, Kurdistan province. www.ijcm.ir 2019; 27 (1) :69-82
URL: http://ijcm.ir/article-1-1226-en.html
Abstract:   (3181 Views)
The Seranjic skarn occurs as invading of Late Jurassic intrusive body with granite composition within impure carbonate rocks. Field observation and mineralogical investigations show the exoskarn is the most widespread skarn in the Seranjic skarn and is mostly calcic skarn together with magnesium skarn as a narrow marginal zone. The mineral assemblages indicate two stages of evolutions: the prograde and the retrograde stages. The prograde stage is characterized by garnet and clinopyroxene. The texture evidences and EPMA chemical analysis of clinopyroxene and garnet show two types of clinopyroxene and three types of garnet in various zones during the prograde skarn. Type 1 clinopyroxene show salitic (Hd27-40 Di58-51 Jo8-14) and ferrosalitic (Hd58-75 Di27-16 Jo8-13) compositions in the forsterite- clinopyroxene and garnet- vesuvianite- clinopyroxene zones respectively. Type 2 clinopyroxene has the intermediate compositions of salitic and ferrosalitic (Hd36-48 Di43-51 Jo7-12) in the garnet- vesuvianite- clinopyroxene zone, which is accompanied by scheelite crystallization. Garnet mostly occurred in the center near the exoskarn zones to the plutonic body. Type 1 garnet is characterized by grossular-rich granditic composition (Grs65 And25 to Grs45 And40) with pyralspite< 10 mol percent, and the textural evidences show coexisting type 1 garnet and type 1 clinopyroxene that is widespread in the garnet- vesuvianite- clinopyroxene zone. Type 2 garnet (Grs50 And25 Pyr25 to Grs45 And20 Pyr35) and type 3 garnet (Grs70 Pyr30 to Grs60 Pyr40) have the highly pyralspite and occurs as proximal zones from the plutonic bodies. Based on mineral assemblages, the formation of type 1 garnet, comparative to type 2 and type 3 garnet, is in more oxidized condition in the distal zones of the skarn. Moreover, garnet/clinopyroxene ratios observed at the skarn is affected by the F high volume of magma-fluid. Also, the abundance of F in the volatile phase is probably largely responsible for the abundance of F-bearing minerals, such as vesuvianite, and the scarcity of pyroxene in the skarn. Composition of the variation types of clinopyroxene and garnet show the prograde skarn can be stable at relatively oxidized to relatively reduced and LogfO2 = -18 to -30.
Full-Text [PDF 122 kb]   (890 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Cepedal A., Martin-Izard A., Reguilón R., Rodrıguez-Pevida L., Spiering, E., González- Nistal S., "Origin and evolution of the calcic and magnesian skarns hosting the El Valle-Boinás copper–gold deposit, Asturias (Spain)", Journal of Geochemical Exploration 71 (2000) 119–151. [DOI:10.1016/S0375-6742(00)00149-7]
2. [2] Ciobanu C.L., Cook N.J., "Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania", Ore Geology Review 24 (2004) 315–370. [DOI:10.1016/j.oregeorev.2003.04.002]
3. [3] Grammatikopoulos T.A., Clark A.H., "A comparative study of wollastonite skarn genesis in the Central Metasedimentary Belt, southeastern Ontario, Canada", Ore Geology Review 29 (2006) 146–161. [DOI:10.1016/j.oregeorev.2005.11.007]
4. [4] Meinert L.D., "Compositional variation of igneous rocks associated with skarn deposits-chemical evidence for a genetic connection between petrogenesis and mineralization", Mineralogical Association of Canada, Short Course Series (1995) 23pp. 401–418.
5. [5] Lehrmann B., Oliver N.H., Rubenach M.J., Georgees C., "The association between skarn mineralisation and granite bodies in the Chillagoe region, North Queensland, Australia", Journal of Geochemical Exploration 101 (2009) 58. [DOI:10.1016/j.gexplo.2008.12.032]
6. [6] Meinert L.D., Dipple G.M., Nicolescu S., "World skarn deposits", Society of Economic Geologists, Economic Geology 100th Anniversary (2005) 299–336.
7. [7] Einaudi M.T., Burt D.M., "Introduction-terminology, classification, and composition of skarn deposits", Economic Geology 77 (1982) 745-754. [DOI:10.2113/gsecongeo.77.4.745]
8. [8] Gaspar M., Knaack C., Meinert L.D., Moretti R., "REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit", Geochimica et Cosmochimica Acta 72 (2008) 185-205. [DOI:10.1016/j.gca.2007.09.033]
9. [9] Gao Y.B., Li W.Y., Qian B., Li D.S., He S.Y., Zhang Z.W., Zhang J.W., "Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron/mineralization in Yemaquan deposit, East Kunlun, NW China", Acta Petrollei Sinica 30 (2014) 1647-1665 (in Chinese with English abstract).
10. [10] Somarin A.K., "Garnet composition as an indicator of Cu mineralization: evidence from skarn deposits of NW Iran", Journal of Geochemical Exploration 81 (2004) 47-57. [DOI:10.1016/S0375-6742(03)00212-7]
11. [11] Liu J.N., Feng C.Y., Zhao Y.M., Li D.X., Xiao Y., Zhou J.H., Ma Y.S., "Characteristics of intrusive rock, metasomatites, mineralization and alteration in Yemaquan skarn Fe– Zn polymetallic deposit, Qinghai Province", Mineral Deposits 32 (2013) 77-93 (in Chinese with English abstract).
12. [12] Zhai D.G., Liu J.J., Zhang H.Y., Wang J.P., Su, L., Yang, X.A., Wu S.H., "Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: in situ LA-ICP-MS evidence", Lithos 190 (2014) 279-291. [DOI:10.1016/j.lithos.2013.12.017]
13. [13] Arai H., "A function for the R programming language to recast garnet analyses into end-members: Revision and porting of Muhling and Griffin's method", Computer and Geoscience 36 (2010) 406-409. [DOI:10.1016/j.cageo.2009.05.007]
14. [14] Yavuz F., "WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry", American Mineralogists 98 (2013) 1338-1359. [DOI:10.2138/am.2013.4292]
15. [15] Mohajjel M., Fergusson C.L., Sahandi M.R., "Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran", Journal of Asian Earth Sciences, 21 (2003) 397-412. [DOI:10.1016/S1367-9120(02)00035-4]
16. [16] Dilek Y., Imamverdiyev N., Altunkaynak S., "Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint", International Geology Review 52 (2010) 536-578. [DOI:10.1080/00206810903360422]
17. [17] Hosseini M., "Geological map of Qorveh", Geological Survey of Iran, scale 1:100000 (1999).
18. [18] Azizi H., Mohammadi K., Asahara Y., Tsuboi M., Daneshvar N., Mehrabi B., "Strongly peraluminous leucogranite (Ebrahim-Attar granite) as evidence for extensional tectonic regime in the Cretaceous, Sanandaj-Sirjan zone, northwest Iran", Chemie der Erde 76 (2016) 529-541. [DOI:10.1016/j.chemer.2016.08.006]
19. [19] Azizi H., Zanjefili-Beiranvand M., Asahara Y., "Zircon U-Pb ages and petrogenesis of a tonalite trondhjemite–granodiorite (TTG) complex in the northern Sanandaj-Sirjan zone, northwest Iran: Evidence for Late Jurassic arc-continent collision", Lithos 216-217 (2015) 178-195. [DOI:10.1016/j.lithos.2014.11.012]
20. [20] Azizi H., Asahara Y., "Juvenile granite in the Sanandaj–Sirjan zone, NW Iran: Late Jurassic-Early Cretaceous arc-continent collision", International Geology Review 55 (2013) 1523-1540. [DOI:10.1080/00206814.2013.782959]
21. [21] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., "U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-SirjanZone, Iran", Journal of Asian Earth Science 41 (2011) 238-249. [DOI:10.1016/j.jseaes.2011.03.006]
22. [22] Dick L.A., Hodgson C.J., "The MacTung W-Cu(Zn) contact metasomatic and related deposits of the northeastern Canadian Cordillera", Economic Geology 77 (1982) 845-867. [DOI:10.2113/gsecongeo.77.4.845]
23. [23] Steven N.M., Moore J.M., "Pan-African tungsten skarn mineralization at the Otjua prospect, Central Namibia", Economic Geology 89 (1993) 1431-1453. [DOI:10.2113/gsecongeo.89.7.1431]
24. [24] Newberry R.J., "Tungsten-bearing skarns of the Sierra Nevada, The Pine Creek Mine, California", Economic Geology 77 (1982) 823-844. [DOI:10.2113/gsecongeo.77.4.823]
25. [25] Zaw K., Singoyi B., "Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes", Economic Geology 95 (2000) 1215-1230. [DOI:10.2113/gsecongeo.95.6.1215]
26. [26] Orhan A., "Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions", Ore Geology Review 80 (2017) 141-165. [DOI:10.1016/j.oregeorev.2016.06.029]
27. [27] Zaw K., "The CanTung E-Zone orebody, tungsten, Northwest Territories: A major scheelite skarn deposit", M.Sc. thesis, Queen's University, Kingston, Ontario, Canada (1976) 327 p. (unpublished).
28. [28] Kwak T.A.P., Tan T.H., "The geochemistry of zoning in skarn minerals at the king Island (Dolphin) mine", Economic geology 76 (1981) 468-497. [DOI:10.2113/gsecongeo.76.2.468]
29. [29] Einaudi M.T., Meinert L.D., Newberry R.J., "Skarn deposits", Society of Economic Geologists, Economic Geology 75th Anniversary (1981) 317-391.
30. [30] Berger J., Femenias O., Mercier J.C.C., Demaiffe D., "Ocean floor hydrothermalmetamorphismin Limousin ophiolites (Western French Massif Central): evidence of a rare preserved Variscan oceanic marker", journal of Metamorphic geology 23 (2005) 795-812.
31. [31] Nakano T., "Fluctuation model for compositional heterogeneity of skarn clinopyroxenes", Geochemical Journal 23 (1989) 91-99. [DOI:10.2343/geochemj.23.91]
32. [32] Nakano T., "An antipathetic relation between the hedenbergite and johannsenite components in skarn clinopyroxene from the Kagata tungsten deposit, Central Japan", Canadian Mineralogist 29 (1991) 427-434.
33. [33] Sheikhi F., Alaminia Z., Tabakh-Shabani A.A. "Seranjic skarn geothermometery, SW Ghorveh, Kurdestan, Iran", Iranian Journal of Crystallography and Mineralogy 20 (2012) 343-355 (in Persian with English abstract).
34. [34] Meinert L.D., Hedenquist J.W., Satoh H., Matsuhisa Y., "Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids", Economic Geology 98 (2003) 147–156. [DOI:10.2113/gsecongeo.98.1.147]
35. [35] Kwak T.A.P., "Fluid inclusions in skarns (carbonate replacement deposits)", Journal of Metamorphic Geology 4 (1986) 363-384. [DOI:10.1111/j.1525-1314.1986.tb00358.x]
36. [36] Greenwood H.J., "Wollastonite: Stability in H2O–CO2 mixtures and occurrence in a contact-metamorphic aureole near Salmo, British Columbia, Canada", American Mineralogy 52 (1967) 1669-1680.
37. [37] Newton R. C., "Somec alc-silicatee quilibrium relations", American journal of science, 264 (1966) 204-222. [DOI:10.2475/ajs.264.3.204]
38. [38] Gordon T.M., Greenwood H.J., "The stability of grossular in H2O-CO2 mixtures", American Mineralogy 56 (1971) 1674-1688.
39. [39] Sweeney M.1., "Geochemistry of garnets from the North Ore shoot, Bingham district, Utah", M.Sc. thesis, University of Utah, (1980) 154 pp (Unpublished).
40. [40] Hochella JR. M.F., Liou J.G., Keskinen M.J., Kim H.S., "Synthesis and stability relations of magnesium idocras", Economic Geology 77 (1982) 798-808. [DOI:10.2113/gsecongeo.77.4.798]
41. [41] Dobson D.C., "Geology and alteration of the Lost River tin-tungsten-fluorine deposit, Alaska", Economic Geology 77 (1982) 1033-105. [DOI:10.2113/gsecongeo.77.4.1033]
42. [42] Shimazaki H., "Grossular-spessartine-almandine garnets from some Japanese scheelite skarns", Canadian Mineralogist 15 (1977) 74-80.
43. [43] Burton J.C., Taylor L.A., Chou I.M., "The fO2-T and fS2-T stability relations of hedenbergite and of hedenbergite-johannsenite solid solutions", Economic Geology 77 (1982) 764-783. [DOI:10.2113/gsecongeo.77.4.764]
44. [44] Liou J.G., "Synthesis and stability relations of epidote, Ca2Al2FeSi3O12(OH)", Journal of Petrology 14 (1973) 381-41. [DOI:10.1093/petrology/14.3.381]
45. [45] Moecher D.P., Chou I.M., "Experimental investigation of andradite and hedenbergite equilibria employing the hydrogen sensor technique, with revised estimates of ΔfG0 m,298 for andradite and hedenbergite", American Mineralogists 75 (1990) 1327-1341.
46. [46] Haas J.L., Robie R.A., "Thermodynamic data for wustite, Fe0.947O magnetite, Fe3O4, and hematite, Fe2O3", American geophysics ::union:: Trans. 54 (1973) 488.
47. [47] Simon G., Kesler S.E., Essene E.J., Chryssoulis S.L., "Gold in porphyry copper deposits: experimental determination of the distribution of gold in the Cu-Fe-S system at 400° to 700 °C", Economic Geology 95 (2000) 259-270. [DOI:10.2113/gsecongeo.95.2.259]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb