Volume 32, Issue 3 (10-2024)                   www.ijcm.ir 2024, 32(3): 537-550 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi A, Biabangard H. Geothermobaromertry of minettes from Kouleh sangi area, north of Zahedan, southeast Iran. www.ijcm.ir 2024; 32 (3) :537-550
URL: http://ijcm.ir/article-1-1922-en.html
1- Department of Geology, University of Sistan and Baluchestan, Zahedan, Iran
Abstract:   (113 Views)
To determine the equilibrium temperatures and pressures of intrusive and hypabbyssal minettes from north of Zahedan (NZM), eastern Iran, three geothermometers and one geobarometer have been deployed.  These are phlogopite/liquid TiO2 exchange geothermometer, phlogopite-apatite F-OH exchange geothermometer, olivine-spinel Cr-Al-Fe3+ exchange geothermometer, and phlogopite geobarometer. The calculated temperatures show reasonable consistency for the three geothermometers.  Average temperatures for NZM rocks are: 1106 °C (SD = 25), 1078 °C (SD = 31) and 1069 °C (SD = 77) for the three geothermometers, respectively.  The calculated pressures are in the range 7.3 to 10.3 kbar (mean = 8.7; SD = 0.9), corresponding to depths of 23 to 30 km, well within the lithospheric mantle.  Phlogopite is the most abundant mineral and a near-liquidus phase in these rocks, the original P-T calibration has been done on a Mexican lamprophyre similar to NZMs and calculated temperatures show a narrow range with small standard deviations.  Therefore, the average pressure (8.7 kbar) and temperature (1106 ⁰C) obtained from phlogopite/liquid geothermobarometry are suggested for these rocks.
 
Full-Text [PDF 1195 kb]   (55 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Blundy J., "Chemical differentiation by mineralogical buffering in crustal hot zones", Journal of Petrology 63 (2022) https://doi. org/10.1093/petrology/egac054. [DOI:10.1093/petrology/egac054]
2. [2] White W.M., "Geochemistry", Wiley-Blackwell, (2013) California, USA, 668 p.
3. [3] Putnis A., "Fluid-mineral interactions: controlling coupled mechanisms of reaction, mass transfer and deformation", Journal of Petrology (2021) https://doi.org/10.1093/petrology/egab092 [DOI:10.1093/petrology/egab092.]
4. [4] Asadi A., Ghasemi H., Mobasheri M., "Olivine chemistry as a petrogenetic indicator for origin and formation conditions of Sargaz-Abshur ultramafic-mafic intrusion, SE Baft, Kerman" (in Persian), Iranian Journal of Crystallography and Mineralogy 31 (2022) 31-44. [DOI:10.52547/ijcm.31.1.31]
5. [5] Ghorbani Gh., Mardani F., Shafaii Moghaddam M., "Geothermobarometry of late Neoprotrozoicgabbroic bodies from Shotor -Kuh area, N Torud (SE shahrood) based on pyroxene and amphibole chemistry" (in Persian), Iranian Journal of Crystallography and Mineralogy 32 (2024) 99-112. [DOI:10.61186/ijcm.32.1.99]
6. [6] Dehghani Dashtabi S., Rahgoshay M., Mahmoody Sh., "Geochemistry of biotite and its formation conditions in Hararan granitoid" (in Persian), Iranian Journal of Crystallography and Mineralogy 31 (2022) 697-708. [DOI:10.61186/ijcm.31.4.697]
7. [7] Tajbakhsh G., Khodami M., Monsef R., "Mineral chemistry and geothermo-barometry based on amphibole of alkali gabbro dykes of Zarigan, northeast of Bafq" (in Persian), Iranian Journal of Crystallography and Mineralogy 31 (2022) 59- 74. [DOI:10.52547/ijcm.31.1.59]
8. [8] Aghanabati A., "Geology of Iran", Geological survey and Mineral exploration of Iran publication (1383) Tehran, Iran, 586 p. (in Persian)
9. [9] Tirrul, R., Bell, I.R., Griffis, R.J., Camp, V.E., "The Sistan suture zone of eastern Iran", Geological Society of America Bulletin 94 (1983): 134-150. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2 [DOI:10.1130/0016-7606(1983)942.0.CO;2]
10. [10] Mohammadi A., Burg J.P., Bouilhol P., Ruh J., "U-Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: Implication for closure of the South Sistan suture zone", Lithos 248-251 (2016): 293-308. [DOI:10.1016/j.lithos.2016.02.003]
11. [11] Camp V.E., Griffis R.L., "Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran", Lithos 15 (1982) 221-239. [DOI:10.1016/0024-4937(82)90014-7]
12. [12] Sargazi M., Bagheri S., Ma X., "Oligocene calc-alkaline lamprophyres and K-rich association in the eastern Iranian ranges: Products of low-degree melting of subduction-modified lithospheric mantle in post-orogenic setting", Lithos (2022) https://doi.org/10.1016/j.lithos.2022.106864 [DOI:10.1016/j.lithos.2022.106864.]
13. [13] Moradi R., Boomery M., Bagheri S. Nakashima K., "Mineral chemistry of igneous rocks in the Lar Cu-Mo prospect, southeastern part of Iran: implications for P, T, and Æ O2", Turkish Journal of Earth Sciences (2017), DOI: 10.3906/yer-1510-5. [DOI:10.3906/yer-1510-5]
14. [14] Boomeri M., Moradi R., Stien H., Bagheri S., "Geology, Re-Os age, S and O isotopic composition of the Lar porphyry Cu-Mo deposit, southeast Iran", Ore Geology Reviews 104 (2019) 477-494. [DOI:10.1016/j.oregeorev.2018.11.018]
15. [15] Droop G. T. R., "A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria", Mineralogical Magazine 51 (1987) 431-435. [DOI:10.1180/minmag.1987.051.361.10]
16. [16] Williams H., Turner F.J., Gilbert C.M., "Petrography: Introduction to the Study of Rocks in Thin Sections", Freeman W.H. & Co Ltd (1982); 2nd edition, 626 P.
17. [17] Le Maitre R.W., "Igneous Rocks, a Classification and Glossary of Terms", Cambridge University Press, New York (2002), 236 p. [DOI:10.1017/CBO9780511535581]
18. [18] Morimoto N., "Nomenclature of pyroxenes", Mineralogical Magazine, 52 (1988) 535-550. [DOI:10.1180/minmag.1988.052.367.15]
19. [19] Bailey S.W., "Classification and structure of the micas", In: Bailey SW (ed) Micas. Review in Mineralogy 13 (1984) 1-12. [DOI:10.1515/9781501508820-005]
20. [20] Whitney, D.L., and Evans, B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
21. [21] Fisher J.R., Zen E., "Thermochemical calculations from hydrothermal phase equilibrium data and the free energy of H2O", American Journal of Sciences 270 (1971) 297-314. [DOI:10.2475/ajs.270.4.297]
22. [22] Esperanca S., Holloway J.R., "On the origin of some mica-lamprophyres: experimental evidence from a mafic minette", Contributions to Mineralogy and Petrology 95 (1987) 207-216 [DOI:10.1007/BF00381270]
23. [23] Guo J., Green T.H., "Experimental study of barium partitioning between phlogopite and silicate liquid at upper-mantle pressure and temperature", Lithos 24 (1990) 83-95. [DOI:10.1016/0024-4937(90)90018-V]
24. [24] Righter K., Carmichael I.S.E., "Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks", Contributions to Mineralogy and Petrology 123 (1996) 1-21. [DOI:10.1007/s004100050140]
25. [25] Zhu C., Sverjenski D.A., "F-Cl-OH partitioning between biotite and apatite", Geochimica Cosmochimica Acta 56 (1992) 3435- 3467. [DOI:10.1016/0016-7037(92)90390-5]
26. [26] Munoz J.L., "F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. In: Baily SW (ed) Micas", Review in Mineralogy 13 (1984) 469-493 [DOI:10.1515/9781501508820-015]
27. [27] Roeder P.L., Campbell I.H., Jamieson H.E., "A re-evaluation of the olivine-spinel geothermometer", Contributions to Mineralogy and Petrology 68 (1979): 325-334. [DOI:10.1007/BF00371554]
28. [28] Brown G.M., Pinsent R.H., Coisy P., "The petrology of the spinel-peridotite xenoliths from the Massif Central, France", American Journal of Science 280 (1980) 471-498.
29. [29] Holness M.B., Vukmanovic Z., Mariani E., "Assessing the role of compaction in the formation of adcumulates: a microstructural perspective", Journal of Petrology 58 (2017) 643-673. [DOI:10.1093/petrology/egx037]
30. [30] Ferrero S., Angel R. J., "Micropetrology: are inclusions grains of truth?", Journal of Petrology 59 (2018) 1671-1700. https//doi.org/ 10.1093/petrology/egy075. [DOI:10.1093/petrology/egy075]
31. [31] Esperanca S., Holloway J.R., "The origin of high-K latites from Camp Creek, Arizona: constraints from experiments with variable fO2 and aH2O", Contributions to Mineralogy and Petrology 93 (1986) 504-512. [DOI:10.1007/BF00371720]
32. [32] Feldstein S.N., Lange R.A., "Pliocene potassic magmas from the King River Region, Sierra Nevada, California: evidence for melting of a subduction-modified mantle", Journal of Petrology 40 (1999) 1301-1320. [DOI:10.1093/petrology/40.8.1301]
33. [33] Foley S.F. Venturelli G., Green D.H., Toscani L., "The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models", Earth-Science Reviews 24 (1987): 81-134. [DOI:10.1016/0012-8252(87)90001-8]
34. [34] Magee C., Stevenson C.T.E., Ebmeier S.K., Keir D., Hammond J. O. S., Gottsmann J. H., "Magma plumbing system: a geophysical perspective", Journal of Petrology 59 (2018) 1217-1251. [DOI:10.1093/petrology/egy064]
35. [35] Varekamp J.C., "The significance of mafic nodules in the ultrapotassic rocks from central Italy discussion", Journal of Volcanology and Geothermal Research 16 (1983) 161-165. [DOI:10.1016/0377-0273(83)90089-6]
36. [36] Holness M.B., Vukmanovic Z., O'Driscoll B., "The formation of chromite chains and clusters in igneous rocks", Journal of Petrology 64 (2023). https://doi.org/10.1093/petrology/egac124 [DOI:10.1093/petrology/egac124.]
37. [37] Boulanger M., France L., "Cumulate formation and melt extraction from mush-dominated magma reservoirs: the melt flush process exemplified at mid-ocean ridges", Journal of Petrology 64 (2023) DOI:10.1093/petrology/egu036. [DOI:10.1093/petrology/egu036]
38. [38] Abersteiner A., Kamenetsky V.S., Golovin A., Kamenetsky M., "Olivine in kimberlites: magma evolution from deep mantle to eruption", Journal of Petrology, (2022) . https://doi.org/10.1093/petrology/egac055 [DOI:10.1093/petrology/egac055.]
39. [39] Roeder P.L., "Chromite: from the Fiery Rain of chondrules to the Kilauea Iki lava lake", Canadian Mineralogist 32 (1994) 729-746.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb