Volume 32, Issue 2 (7-2024)                   www.ijcm.ir 2024, 32(2): 339-358 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Damchin mashak S, Torkian A, Furman T. Mineral chemistry and P-T estimation of coexisting minerals in the andesitic rocks from the N-Saqqez, NW Iran. www.ijcm.ir 2024; 32 (2) :339-358
URL: http://ijcm.ir/article-1-1915-en.html
1- Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
2- Department of Geology, State Pennsylvania university, Park university, P.A.16802, America
Abstract:   (619 Views)
The studied area (Saqqez) is located in the north of Sanandaj-Sirjan zone in the Kurdistan province, northwestern Iran. Andesite and basaltic-andesite rocks contain amphibole, plagioclase, clinopyroxene, and orthopyroxene minerals with porphyritic and seriate textures. The composition of amphiboles ranges from magnesio-hastingsite, magnesio-hornblende to tschermakite-pargasite. Pyroxenes are augite Wo45.39 - 39.33 En40.37-40.26 Fs20.49-13.89 and enstatite Wo 2.842-3.287 En59.863-71.04Fs26.083-36.850 in compositions. The anorthite content in plagioclase is between 67 and 80 (wt.%) and their composition varies from labradorite to bytownite crystals. Thermobarometry through the method of Al- amphibole indicates crystallization temperature is between 895 and 961 °C with 2.11 - 4.59 kbar pressure. Moreover, the amount of Ti, indicates temperature crystalizing in the range 800 to 950 °C for amphibole. Clinopyroxene mineral chemistry based on the type of pyroxene shows that the studied volcanic rocks were crystallized at temperatures and pressures of 1100-1250 °C and 2-10 Kbar, respectively. Also, the amount of AlIV and Si indicates that amphiboles were crystalized at low pressures, which is consistent with the amount of AlIV/AlVI in the low to medium pressure pyroxenes of the investigation. Furthermore, the amount of AlVI+2Ti+Cr and Na+AlIV in the pyroxene crystals and LogƒO2 and Fe# values in studied amphiboles show they were crystallized in high oxygen fugacity.
Full-Text [PDF 2192 kb]   (71 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Putirka KD., "Thermometers and barometers for volcanic systems", Reviews in mineralogy and geochemistry 69.1 (2008) 61-120. https://doi.org/10.2138/rmg.2008.69.3 [DOI:10.2138/rmg.2008.69.3.]
2. [2] Le Bas MJ., "The role of aluminum in igneous clinopyroxenes with relation to their parentage", American Journal of Science 260.4 (1962) 267-288. https://doi.org/10.2475/ajs.260.4.267 [DOI:10.2475/AJS.260.4.267.]
3. [3] Leterrier J., Maury RC., Thonon P., Girard D., Marchal M., "Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series", Earth and Planetary Science Letters 59.1 (1982): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4 [DOI:10.1016/0012-821X(82)90122-4.]
4. [4] Beccaluva L., Macciotta G., Spadea P., "Petrology and geodynamic significance of the Calabria- Lucania ophiolite", (1989).
5. [5] Şengör AC., Yilmaz Y., "Tethyan evolution of Turkey: a plate tectonic approach", Tectonophysics 75.3-4 (1981) 181-241. [DOI:10.1016/0040-1951(81)90275-4]
6. [6] Stampfli GM., Borel GD., "A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons", Earth and Planetary science letters 196.1-2 (2002) 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X [DOI:10.1016/S0012-821X(01)00588-X.]
7. [7] Agard P., Omrani J., Jolivet L., Mouthereau F., "Convergence history across Zagros (Iran): constraints from collisional and earlier deformation", International journal of earth sciences 94 (2005) 401-419. [DOI:10.1007/s00531-005-0481-4]
8. https://doi.org/10.1007/s00531-005-0481-4 [DOI:10.1007/s00531-005-0481-4.]
9. [8] Hariri A., Farjandi F., Vaezipoor M., Sadegi A., "Geology Map of Saqqez (Scale 1:
10. 100000) No: 5262 (in Persian)", Geological Survey of Iran, Tehran (2003).
11. [9] Gholipour S., Azizi H., Masoudi F., Asahara Y., Tsuboi M., "Zircon U-Pb ages, geochemistry, and Sr-Nd isotope ratios for early cretaceous magmatic rocks, southern Saqqez, northwestern Iran", Geochemistry 81.1 (2021) 125687. https://doi.org/10.2138/am-1998-9-1004 [DOI:10.2138/am-1998-9-1004.]
12. [10] Daneshvar N., Maanijou M., Azizi H., Asahara Y., "Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran", Journal of Geodynamics 132 (2019) 101669. [DOI:10.1016/j.jog.2019.101669]
13. https://doi.org/ 10.1016/j.jog.2019.101669. [DOI:10.1016/j.jog.2019.101669.]
14. [11] Stocklin J., Nabavi MH., "1/2,500,000 sheet, tectonic map of Iran (in Persian)", Geological Survey of Iran (1973).
15. [12] Azizi H., Kazemi T., Asahara Y., "A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic", Journal of Geodynamics 108 (2017) 56-72. https://doi.org/10.1016/j.jog.2017.05.003 [DOI:10.1016/j.jog.2017.05.003.]
16. [13] Sepahi AA., Athari SF., "Petrology of major granitic plutons of the northwestern part of the Sanandaj-Sirjan Metamorphic Belt, Zagros Orogen, Iran: with emphasis on A-type granitoids from the SE Saqqez area", Neues Jahrbuch Fur Mineralogie-Abhandlungen 183.1 (2006) 93-106. https://doi.org/ 10.1127/0077-7757/2006/0063. https://doi.org/10.1127/0077-7757/2006/0063 [DOI:10.1127/0077-7757/2006/0063.]
17. [14] Mahmoudi S., Corfu F., Masoudi F., Mehrabi B., Mohajjel M., "U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran", Journal of Asian Earth Sciences 41.3 (2011) 238-249. https://doi.org/10.1016/j.jseaes.2011.03.006 [DOI:10.1016/j.jseaes.2011.03.006.]
18. [15] Khodabandeh A.A., Zabihi M.R., Hadadan M., Yousefi Rad A., "geological map of Miandoab (scale 1:100,000) No: (in Persian)", Geological Survey of Iran, Teharn (2003).
19. [16]Yavuz F., WinPyrox "A Windows program for pyroxene calculation classification and thermobarometry", American Mineralogist 98.7 (2013) 1338-1359 . [DOI:10.2138/am.2013.4292]
20. https://doi.org/10.2138/am.2013.4292 [DOI:10.2138/am.2013.4292.]
21. [17]Yavuz F., Yavuz EV., "A Windows program for feldspar group thermometers and hygrometers", Period Mineral 91 (2022) 63-87. [DOI:10.13133/2239-1002/17666.]
22. [18] Papike JJ., "Amphiboles and pyroxenes: Characterization of other than quadrilateral components estimates of ferric iron from microprobe data", Geological Society of America Abstract with Programs. Vol. 6. (1974).
23. [19] Leake BE., Woolley AR., Arps CE., Birch WD., Gilbert MC., Grice JD., Hawthorne FC., Kato A., Kisch HJ., Krivovichev VG., Linthout K., "Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineral ogical Association Commission on new minerals and mineral names", Mineralogical magazine 61 405 (1997) 295-310. http://dx.doi.org/10.1127/ejm/9/3/0623. [DOI:10.1127/ejm/9/3/0623]
24. [20] Whitney DL., Evans BW., "Abbreviations for names of rock-forming minerals", American mineralogist 95.1 (2010) 185-187. https://doi.org/ 10.2138/am.2010.3371. https://doi.org/10.2138/am.2010.3371 [DOI:10.2138/am.2010.3371.]
25. [21] Ridolfi F., Renzulli A., "Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa", Contributions to Mineralogy and Petrology. 163 (2012) 877-895. https://doi.org/ 10.1007/s00410-011-0704-6. https://doi.org/10.1007/s00410-011-0704-6 [DOI:10.1007/s00410-011-0704-6.]
26. [22] Sousa CS., Conceição H., Soares HS., Fernandes DM., da Silva Rosa MD., "Magmatic processes recorded in plagioclase crystals of the Rio Jacaré Batholith, Sergipano Orogenic system, Northeast Brazil", Journal of South American Earth Sciences 118 (2022) 103942. https://doi.org/10.1016/j.jsames.2022.103942 [DOI:10.1016/j.jsames.2022.103942.]
27. [23] Deer WA., Howie RA., Zussman J., "An introduction to the rock-forming minerals", London Longman (1992).
28. [24] Morimoto N., "Nomenclature of pyroxenes", Fortschr mineral 14.5 (1988) 198-221. [DOI:10.2465/minerj.14.198]
29. [25] Deer WA., Howie R A., Zussman J., "Single-chain silicates London", Longman (1978).
30. [26] Aydin F., Karsli O., Sadiklar MB., "Compositional variations, zoning types and petrogenetic implications of low-pressure clinopyroxenes in the Neogene alkaline volcanic rocks of northeastern Turkey", Turkish Journal of Earth Sciences 18.2 (2009) 163-186. https://doi.org/10.3906/yer-0802-2 [DOI:10.3906/yer-0802-2.]
31. [27] Nisbet EG., Pearce JA., "Clinopyroxene composition in mafic lavas from different tectonic settings", Contributions to mineralogy and petrology 63.2 (1977) 149-160. https://doi.org/10.1007/BF00398776 [DOI:10.1007/BF00398776.]
32. [28] Ridolfi F., Renzulli A., Puerini M., "Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes", Contributions to mineralogy and petrology 160 (2010) 45-66. https://doi.org/ 10.1007/s00410-009-0465-7. https://doi.org/10.1007/s00410-009-0465-7 [DOI:10.1007/s00410-009-0465-7.]
33. [29] Kilgore ML., Peslier AH., Brandon AD., Lamb WM., "Water and oxygen fugacity in the lithospheric mantle wedge beneath the Northern Canadian Cordillera (Alligator Lake)", Geochemistry, Geophysics, Geosystems 1910 (2018) 3844-3869. [DOI:10.1029/2018GC007700]
34. https://doi.org/10.1029/2018GC007700 [DOI:10.1029/2018GC007700.]
35. [30] Sisson TW., Grove TL., "Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism", Contributions to mineralogy and petrology 113 (1993) 143-166. [DOI:10.1007/BF00283225]
36. https://doi.org/10.1007/BF00283225 [DOI:10.1007/BF00283225.]
37. [31] Anderson JL., Smith DR., "The effects of temperature and fO2 on the Al-in-hornblende barometer, American mineralogist ", 80 5-6 (1995) 549-559. https://doi.org/10.2138/am-1995-5-614 [DOI:10.2138/am-1995-5-614.]
38. [32] France L., Ildefonse B., Koepke J., Bech F., "A new method to estimate the oxidation state of basaltic series from microprobe analyses, Journal of Volcanology and Geothermal Research", 189 3-4 (2010) 340-346. [DOI:10.1016/j.jvolgeores.2009.11.023]
39. https://doi.org/10.1016/j.jvolgeores.2009.11.023 [DOI:10.1016/j.jvolgeores.2009.11.023.]
40. [33] Schweitzer EL., Papike JJ., Bence AE., "Statistical analysis of clinopyroxenes from deep-sea basalts", American Mineralogist. 64.5-6 (1979) 501-513. https://doi.org/ 10.1007/s00410-009-0465-7. [DOI:10.1007/s00410-009-0465-7.]
41. [34] Cameron M., Papike JJ., "Structural and chemical variations in pyroxenes", American Mineralogist 66.1-2 (1981) 1-50.
42. [35] Ridolfi F., Puerini M., Renzulli A., Menna M., Toulkeridis T., "The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products", Journal of Volcanology and Geothermal Research 176.1 (2008) 94-106. [DOI:10.1016/j.jvolgeores.2008.03.003]
43. https://doi.org/ 10.1016/j.jvolgeores.2008.03.003. [DOI:10.1016/j.jvolgeores.2008.03.003.]
44. [36] Davidson J., Turner S., Handley H., Macpherson C., Dosseto A., "Amphibole sponge in arc crust?," 35.9 (2007) 787-790. https://doi.org/10.1130/G23637A.1 [DOI:10.1130/G23637A.1.]
45. [37] Ghoneim MF., "Mineral chemistry of some gabbroic rocks of the central Eastern Desert, Egypt", Journal of African Earth Sciences (and the Middle East) 9.2 (1989) 289-295. https://doi.org/ 10.1016/0899-5362(89)90071-7. https://doi.org/10.1016/0899-5362(89)90071-7 [DOI:10.1016/0899-5362(89)90071-7.]
46. [38] Ernst WG., Liu J., "Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer", American mineralogist 83.9-10 (1998) 952-969. https://doi.org/ 10.2138/am-1998-9-1004. https://doi.org/10.2138/am-1998-9-1004 [DOI:10.2138/am-1998-9-1004.]
47. [39] Nimis P., Taylor WR., "Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer", Contributions to Mineralogy and Petrology 139 (2000) 541-554. [DOI:10.1007/s004100000156]
48. https://doi.org/10.1007/s004100000156 [DOI:10.1007/s004100000156.]
49. [40] Soesoo A., "A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT‐estimations", GFF 119.1 (1997) 55-60. [DOI:10.1080/11035899709546454]
50. https://doi.org/10.1080/11035899709546454 [DOI:10.1080/11035899709546454.]
51. [41] Sen G., Jones R., "Experimental equilibration of multicomponent pyroxenes in the spinel peridotite field: Implications for practical thermometers and a possible barometer", Journal of Geophysical Research: Solid Earth 94. B12 (1989) 17871-17880. [DOI:10.1029/JB094iB12p17871]
52. https://doi.org/ 10.1029/JB094iB12p17871. [DOI:10.1029/JB094iB12p17871.]
53. [42] Bertrand P., Mercier JC., "The mutual solubility of coexisting ortho and clinopyroxene: toward an absolute geothermometer for the natural system?", Earth and Planetary Science Letters 76.1-2 (1985) 109-122. [DOI:10.1016/0012-821X(85)90152-9]
54. https://doi.org/10.1016/0012-821X(85)90152-9 [DOI:10.1016/0012-821X(85)90152-9.]
55. [43] Aoki KI., "Kushiro I., Some clinopyroxene from ultramafic inclusions in Dreiser Weiher, Eifel", Contributions to Mineralogy and Petrology 18 (1968) 326-337. [DOI:10.1007/BF00399694]
56. https://doi.org/10.1007/BF00399694 [DOI:10.1007/BF00399694.]
57. [44] Nimis P., Ulmer P., "Clinopyroxene geobarometry of magmatic rocks Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems", Contributions to Mineralogy and Petrology 133.1 (1998) 122-135. [DOI:10.1007/s004100050442]
58. https://doi.org/10.1007/s004100050442 [DOI:10.1007/s004100050442.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb