Volume 32, Issue 2 (7-2024)                   www.ijcm.ir 2024, 32(2): 325-338 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ghanei ardakani J. Mineral chemistry of the granitoides of West Ardakan (Central Iran). www.ijcm.ir 2024; 32 (2) :325-338
URL: http://ijcm.ir/article-1-1900-en.html
Department of Geology, Payame Noor University, Tehran, Iran
Abstract:   (177 Views)
The granitoides of west Ardakan are outcropped in the middle part of the Central Iran zone. Quartz, orthoclase and plagioclase are the main minerals and amphibole, biotite, sphene, zircon and apatite are secondary minerals. The dominant textures are medium to fine grain granular, granophyry and myrmikite[r1] . According to mineral chemistry data, calcic amphiboles of magnesiohornblende to actinolite nature have crystallized at temperatures of 530-890 ºC. Oligoclase to andesine plagioclased crystallized at 700-800 ºC. Magnesium biotites was crystallized at 650-730 ºC. On the basis of the oxidant conditions, magnetite are formed as opaque. The chemical analysis of all these minerals show the mantle nature of the magma. Magma seems to suffer produced these minerals, moderate to severe crustal contamination during its ascent. These granitoides are I type  and calc-alkaline and were formed in the subduction setting related to the active continental margin.
Full-Text [PDF 1668 kb]   (82 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Darvishzadeh A., "Geology of Iran", Neda publication, Tehran (1991) 901p.
2. [2] Alavi M., "Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution". American Journal of Science 304 (2004) pp. 1-20. [DOI:10.2475/ajs.304.1.1]
3. [3] Aftabi A., Atapour H., "Regional aspects of shoshonitic volcanism in Iran", Episodes 23 (2000) pp. 119-125.
4. [4] Moin-Vaziri H., "An introduction to magmatism in Iran", Kharazmi University publication. 440pp. (2004) (in Persian).
5. [5] Hassanzadeh J., Ghazi A. M., Axen G., Guest B., "Oligomiocene mafic-alkaline magmatism in north and northwest of Ira n: evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc", Geology Society American Abstract Progom. 34 (2002) 331p.
6. [6] Berberian M., King G. C. P., "Toward a paleogeography and tectonic evolution of Iran.", Canadian Journal of Earth Sciences 18, pp. 210-265. [DOI:10.1139/e81-019]
7. [7] Berberian F., Muir I. D., Pankhurst R. J., Berberian M., "Late Cretaceous and earlyMiocene Andean-type plutonic activity in northern Makran and Central Iran", Journal of the Geological Society 139 (1982) pp. 605-614. [DOI:10.1144/gsjgs.139.5.0605]
8. [8] Mohajjel M., Fergusson C. L., Sahandi M. R., "Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran", Journal of Asian Earth Sciences 21 (2003) pp. 397-412. [DOI:10.1016/S1367-9120(02)00035-4]
9. [9] Omrani J., Agard P., Whitechurch H., Benoit M., Prouteau G., Jolivet L., "Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences", Lithos 106 (2008) pp. 380-398. [DOI:10.1016/j.lithos.2008.09.008]
10. [10] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Aj", Asian Earth Science 24 (2005) pp 405-417. [DOI:10.1016/j.jseaes.2003.11.007]
11. [11] Hajmolaali A., Ghomashi A., Afsharian A.M., Hadadian M., "geology map 1/100000 of Khezrabad", Geological Survey and Mineral Explorationof Iran (1996).
12. [12] Shabanian N., Davoudian A. R., Dong Y., Liu X., "U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan zone of western Iran", Precambrian Research, 306:41-60 (2018). https://doi.org/10.1016/j.precamres.2017.12.037 [DOI:10.1016/j.precamres.2017.12.037.]
13. [13] Esawi E. K., "AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the international mineralogical Association", Computers Geosciences 30 (2004) pp. 753-760. [DOI:10.1016/j.cageo.2004.05.007]
14. [14] Stein E., Dietl E., "Hornblende Thermobarometry of Granitoids of Central Odenwald (Germany) and Their Implication for the Geotectonic Development of the Odenwald", Mineralogy and Petrology, 72 (2001) 185-207. [DOI:10.1007/s007100170033]
15. [15] Anderson J. L., Smith D. R., "The effect of temperature and oxygen fugacity on Al-in-hornblende barometry", American Mineralogist 80 (1995) pp. 549-559. [DOI:10.2138/am-1995-5-614]
16. [16] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., "Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names", Eurpean Journal Mineralogy. 9, (1997) pp. 623-651. [DOI:10.1127/ejm/9/3/0623]
17. [17] Schmidt M., "Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre", Contribution Mineral Petrology 110, (1992) pp. 304-310. [DOI:10.1007/BF00310745]
18. [18] Wones D. R., Eugster H. P., "Stability of biotite experiment, theory, and application", American Mineralogy 50 (1965) pp.1228-1272.
19. [19] Moazzen M., Droop G. T. R., "Application of mineral thermometers and barometers to granitoid igneous rocks: the Etive Complex, W Scotland", Mineralogy and Ptrology 83 (2005) pp. 27-53. [DOI:10.1007/s00710-004-0059-z]
20. [20] Anderson J. L., "Status of thermo-barometry in granitic batholiths", Earth Science Review 87 (1996) pp. 125-138. [DOI:10.1017/S0263593300006544]
21. [21] Chappell B. W., White A. J. R., Williams I. S., Wyborn D., "Low- and high-temperature granites. Trans. Roy. Soc.", Edinburgh: Earth Sci. (in press).
22. [22] Coltorti M., Bondaiman C., Faccini B., Grégoire M., O'Reilly S. Y., Powell W., "Amphiboles from suprasubduction and intraplate lithospheric mantle", Lithos 99 (2007) pp. 68-84. [DOI:10.1016/j.lithos.2007.05.009]
23. [23] Zhang C.L., Yu H.F., Ye H.M., Zhao Y., Zhang D.S., "Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry", petrogenesis and its tectonic implications:Science in China Series D: Earth Sciences, 49(11) (2006) p. 1121-1134. [DOI:10.1007/s11430-006-1121-y]
24. [24] Abdel- Rahman A. M., "Nature of biotites from Alkaline, Calc-alkaline and Peraluminous magmas", Journal of Petrology 35, 2 (1994) pp. 525-541. [DOI:10.1093/petrology/35.2.525]
25. [25] Ben Ohoud M. D., "iscrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites", Publhshed by Elsevier SAS.
26. [26] Droop G. T. R., "A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria", Mineralogical Magazine 51 (1987) pp. 431-435. [DOI:10.1180/minmag.1987.051.361.10]
27. [27] Nachit H., Ibhi A., Abia E. l. H., Ohoud M. B. "Discrimination between primary magmatic Biotites", C. R. Acad. Science. Paris Geoscience 337 (2005) pp.1415-1420. [DOI:10.1016/j.crte.2005.09.002]
28. [28] Nockolds S. R., "The relation between chemical composition and paragenesis in the Biotite micas of igneous rocks", American Journal Science 245 (1947) pp.401-420. [DOI:10.2475/ajs.245.7.401]
29. [29] Fleet M .E., Barnett R.L., "Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario", The Canadian Mineralogist 16 (1978) pp. 527-532.
30. [30] Jiang Y., Jiang S., Ling H., Zhou X., Rui X., Yang W., "Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang", northwestern China:implications for granitoid geneses. Lithos 63 (2002) pp. 165-187. [DOI:10.1016/S0024-4937(02)00140-8]
31. [31] Forster H. J., Tischendorf G., "Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: the Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R)", Chemie der Erade (Geochemistry) 49 (1989) pp.7-20.
32. [32] Lalonde A., Bernard P., "Composition and colour of Biotite from granits", Can. Mineralogy 31 (1993) pp. 203-217.
33. [33] Henry D. J., Guidotti C. V., Thomason J. A., "The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: implications for geothermometry and Ti- substitution mechanisms", American Mineralogist 90 (2005) pp. 316-328. [DOI:10.2138/am.2005.1498]
34. [34] Ague J. J., Brimhall G. H., "Regional variations in bulk chemistry", mineralogy and the compositions of mafic andaccessory minerals in the batholiths of California. Geological Society of America Bulletin, 100 (1988) pp. 891-911 https://doi.org/10.1130/0016-7606(1988)100<0891:RVIBCM>2.3.CO;2 [DOI:10.1130/0016-7606(1988)1002.3.CO;2]
35. [35] Deer W.A., Howie R. A., Zussman J., "An introduction to the rock forming minerals", Longman Scientific and Technical (1991) 528 p.
36. [36] Elkins L .T., Grove T. L., "Ternary feldspar experiments and thermodynamic models", American Mineralogist 75 (1990) pp. 544-559

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb