Volume 32, Issue 3 (10-2024)                   www.ijcm.ir 2024, 32(3): 395-408 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaei-Kahkhaei M, Shi Y, Erambert M, Ghasemi H, Sadeghian M. Microstructure of minerals investigation and the emplacement pattern of Garagheh granitoid pluton using Anisotropy of Magnetic Susceptibility (AMS). www.ijcm.ir 2024; 32 (3) :395-408
URL: http://ijcm.ir/article-1-1885-en.html
1- Department of Petrology and Economic Geology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
2- Institute of Geology, Chinese Academy of Geological Sciences No. 26 Baiwanzhuang Road, Xicheng District, Beijing100037, PR China
3- Department of Geosciences, University of Oslo, PB1047 Blindern, N-0316 Oslo, Norway
Abstract:   (1231 Views)
The granitoid pluton is located about 90 km northwest of Zahedan, in the highest part of the Zahedan-Saravan magmatic belt. Compositionally, the pluton is biotite granite and granodiorite. The rocks forming the northern and southern parts of the pluton have magmatic to sub-magmatic fabric. In addition, our study show low to high temperatures solid-state deformation, such as bulging and chessboard in quartz, myrmikite texture and sliding in biotite. 519 directional cores from 70 stations were collected from the studied area for anisotropy of magnetic susceptibility studies. The mean susceptibility (Km) is from 10-301 µSI. Biotite is the main mineral for magnetic susceptibility in the pluton; where the percentage varies in different parts of the pluton. The P values vary from 0.8-15.5 percent. The T values in most samples are positive and show planner nature. The high degree of dipping of magnetic foliation and lineation, magnetic foliation throughout the pluton are on average from 31 and 60 degrees and shows the northwest-southeast trend. The parallel extension of the lineation with the margin of the pluton and the presence of nearby metamorphic rocks show that during the injection of magma, biotite granite and granodiorite were emplaced parallel to the schistosity of the host rock. In the pluton, the area has magnetic lineation, where a high dip is the main place of magma injection, which is located in the center of the pluton, and other parts can be sub-sites of feeding the pluton. Based on the field observations and magnetic evidence, the parent magmas of the Garagheh granitoid pluton are emplaced as a laccolith with a dip of 45 degrees in the northeast.
Full-Text [PDF 2634 kb]   (217 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Bouchez J.L., "Magnetic susceptibility anisotropy and fabrics in granites", Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science 1 (330) (2000) 1-14. [DOI:10.1016/S1251-8050(00)00120-8]
2. [2] Archanjo C.J, Bouchez J.L, Corsini M., Vauchez A., "The Pombal granite pluton: magnetic fabric, emplacement and relationships with the Brasiliano strike-slip setting of NE Brazil (Paraiba State)", Journal of Structural Geology 16(3) (1994) 323-35. [DOI:10.1016/0191-8141(94)90038-8]
3. [3] Mamtani M.A., Greiling R.O., "Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India)-inferences from magnetic fabric", Journal of Structural Geology 27(11) (2005) 2008-2029. [DOI:10.1016/j.jsg.2005.06.004]
4. [4] Neves S.P., Mariano G., Beltrão B.A., Correia P.B., "Emplacement and deformation of the Cachoeirinha pluton (Borborema province, NE Brazil) inferred through petrostructural studies: constraints on regional strain fields", Journal of South American Earth Sciences 19(2) (2005) 127-41. [DOI:10.1016/j.jsames.2005.04.004]
5. [5] Salazar C.A., Archanjo C.J., Babinski M., Liu D., "Magnetic fabric and zircon U-Pb geochronology of the Itaóca pluton: implications for the Brasiliano deformation of the southern Ribeira belt (SE Brazil)", Journal of South American Earth Sciences 26(3) (2008) 286-99. [DOI:10.1016/j.jsames.2008.08.007]
6. [6] Aguado B.V., Azevedo M.R., Nolan J., Medina J., Costa M.M., Corfu F., Catalán J.M., "Granite emplacement at the termination of a major Variscan transcurrent shear zone: The late collisional Viseu batholith", Journal of Structural Geology 98 (2017) 15-37. [DOI:10.1016/j.jsg.2017.04.002]
7. [7] Sadeghian M., Bouchez J.L., Nedelec A., Siqueira R., Valizadeh M.V., "The granite pluton of Zahedan (SE Iran): a petrological and magnetic fabric study of a syntectonic sill emplaced in a transtensional setting", Journal of Asian Earth Sciences 25(2) (2005) 301-27. [DOI:10.1016/S1367-9120(04)00071-9]
8. [8] Tirrul R., Bell I.R., Griffis R.J., Camp V.E, "The Sistan suture zone of eastern Iran", Geological Society of America Bulletin 94(1) (1983) 134-50. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2 [DOI:10.1130/0016-7606(1983)942.0.CO;2]
9. [9] Boomeri M., Mojadadi H., Biabangard H., "Petrography and geochemistry of igneous rocks and Sb and Au mineralization in Sefidsang and Dargiaban areas, southeastern Iran", Iranian Journal of Petrology 9(3) (2018) 195-218.
10. [10] Rezaei-Kahkhaei M., Corfu F., Sheykhi M., Ghasemi H., Shi Y., "Mineral chemistry and ages of the Eocene Gapdan granitoid pluton and related dykes (Sistan suture zone, eastern Iran): multi-stage emplacement of a zoned pluton during progressive deformation and exhumation", Journal of Asian Earth Sciences 216 (2021) 104813. [DOI:10.1016/j.jseaes.2021.104813]
11. [11] Rezaei-Kahkhaei M., Corfu F., Galindo C., Rahbar R., Ghasemi H., "Adakite genesis and plate convergent process: Constraints from whole rock and mineral chemistry, Sr, Nd, Pb isotopic compositions and U-Pb ages of the Lakhshak magmatic suite East Iran", Lithos 426 (2022) 106806. [DOI:10.1016/j.lithos.2022.106806]
12. [12] Sarhadi N., Rezaei-Kahkhaei M., Shi Y., Erambert M., Ghasemi H., "Thermobarometric and structural constraints on multistage emplacement mechanism of the Garagheh pluton, Sistan Suture Zone (SE Iran)", Journal of Asian Earth Sciences 250 (2023) 105624. [DOI:10.1016/j.jseaes.2023.105624]
13. [13] Tarling D., Hrouda F., "Magnetic anisotropy of rocks", Springer Science & Business Media (1993).
14. [14] Lanza R., Meloni A., "The Earth's Magnetic Field", Springer Berlin Heidelberg (2006).
15. [15] Hrouda F., "Magnetic anisotropy of rocks and its application in geology and geophysics", Geophys Surveys 5 (1982) 37-82. [DOI:10.1007/BF01450244]
16. [16] Rezaei-Kahkhaei M., Kananian A., Esmaeily D., Asiabanha A., "Geochemistry of the Zargoli Granite, Implications for development of the Sistan Suture Zone, southeastern Iranˮ, Island Arc 19 (2010) 259-276. [DOI:10.1111/j.1440-1738.2009.00704.x]
17. [17] Vernon R.H., "Review of microstructural evidence of magmatic and solid-state flow", Visual Geosciences 5 (2000) 1-23. [DOI:10.1007/s10069-000-0002-3]
18. [18] Ceccato A., Menegon L., Pennacchioni G., Morales L.F., "Myrmekite and strain weakening in granitoid mylonites", Solid Earth 9(6) (2018) 399-419. [DOI:10.5194/se-9-1399-2018]
19. [19] Warr L.N., "Recommended abbreviations for the names of clay minerals and associated phasesˮ, Clay Miner 55 (3) (2020) 261-264. [DOI:10.1180/clm.2020.30]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb