Volume 32, Issue 3 (10-2024)                   www.ijcm.ir 2024, 32(3): 409-424 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabbarzadeh Z, Siahcheshm K, Calagari A A. Mineralogical, alteration and fluid inclusion studies of the mineralization occurrence at Tazehkand, northeast of Zanjan, NW Iran. www.ijcm.ir 2024; 32 (3) :409-424
URL: http://ijcm.ir/article-1-1878-en.html
1- Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
Abstract:   (665 Views)
The Tazekand mineral prospect, as part of Tarom-Hashtjin metallogenic belt, is located ~45 km northeast of Zanjan Province, NW Iran. The host rocks of mineral index consist of intrusive rocks with lithologic compositions of quartz monzonite, monzodiorite, diorite to gabbro with the Oligocene and Oligo-Miocene in age. The alteration zones in this area are mainly of chlorite-sericite, phyllic, argillic, propylitic, silicic and carbonate types. Mineralization occurred principally as disseminations, cross-cutting veins-veinlets and replacement in two separate hypogene and supergene stages. Pyrite is the main hypogene sulfide mineral accompanied by magnetite, micaceous hematite (specularite), chalcopyrite and galena. The main supergene minerals in this area include hematite, goethite, limonite, bornite, chalcocite, covellite, azurite and malachite that accompany the hypogene mineral assemblage. Investigation of the phase contents of fluid inclusions within the quartz-sulfide veins-veinlets show the phyllic, silicic and argillic alteration zones. Four types of fluid inclusions have been recognized: (1) mono-phase liquid (L), (2) mono-phase vapor (V), (3) liquid-rich two-phase (L+V) and (4) vapor-rich two-phase (V+L). Homogenization temperatures of the studied fluid inclusions vary from 140 to 300 °C and the last ice-melting temperatures of aqueous two-phase inclusions showed that the salinities range from 0.18 to 8.81 wt% NaCl Equivalent. Based on the microthermometric results of fluid inclusions, it can be conceived that episodic boiling and dilution by subsurface water of meteoric origin were the main mechanisms in development and evolution of the ore-bearing fluids in this prospect. The zonation pattern of the alteration, mineralization and the fluid inclusion data indicate that the Tazehkand mineral index is much similar to the metallic veins associated with porphyry copper deposits.
Full-Text [PDF 2221 kb]   (60 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Amini B., "Geological map of IRAN 1:100000 Tarom (in Persian)", Geological Survey of Iran (2000)
2. [2] Zamanian H., Rahmani S., Zarei-sahameih R., "Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu-Au deposit in Zanjan Province, NW Iran", Implications for ore genesis. Ore Geology Reviews, 112 (2019)103014. [DOI:10.1016/j.oregeorev.2019.103014]
3. [3] Mokhtari M.A.A., Kouhestani H., Saeedi A., "Investigation on type and origin of Copper mineralization at Aliabad Mousavi-Khanchy occurrence, East of Zanjan, using petrological, mineralogical and geochemical data (inPersian)", Scientific Quarterly Journal, 25 (2016) 259-270
4. [4] Ajali N., Torkian A., Tale Fazel E., "Rasht abad Copper-Gold intermediate sulphidation epithermal deposit (north of Zanjan): Evidence of mineralization, Fluid inclusion and stable isotope C-O (in Persian)", Iranian Journal of Crystallography and Mineralogy, 29 (2021) 207-220. [DOI:10.52547/ijcm.29.1.207]
5. [5] Kouhestani H., Azimzadeh A.M., Mokhtari, M.A.A., Ebrahimi M., "Mineralization and fluid evolution of epithermal base metal veins from the Aqkand deposit, NW Iran. Neues Jahrbuch für Mineralogie Abhandlungen", Journal of Mineralogy and Geochemistry, 194 (2017) 139-155. [DOI:10.1127/njma/2017/0036]
6. [6] Mehrabi B., Ghasemi Siani M., Goldfarb R., Azizi H., Ganerod M., Marsh E.E., "Mineral assemblages, fluid evolution and genesis of polymetallic epithermal veins, Gulojeh district, NW Iran", Ore Geology Reviews 78 (2016) 41-57. [DOI:10.1016/j.oregeorev.2016.03.016]
7. [7] Nabatian G., Ghaderi M., Corfu F., Neubauer F., Bernroider M., Prokofiev V., Honarmand M., "Geology, alteration, age and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran", Mineralium Deposita 49 (2014) 217-234. [DOI:10.1007/s00126-013-0484-1]
8. [8] Alavi M.,''Tectonic map of the Middle East: Scale1:5,000,000 Tehran (in Persian)'', Geological Survey of Iran (1991).
9. [9] Azizi H., Jahangiri A., "Cretaceous subduction-related volcanism in the northern Sanandaj-Sirjan Zone, Iran", J. Geodyn, 45 (2008) 178-190. [DOI:10.1016/j.jog.2007.11.001]
10. [10] Azizi H., Moinevaziri H., "Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran", J. Geodyn. 47(2009) 167-179. [DOI:10.1016/j.jog.2008.12.002]
11. [11] Aghazadeh M., Castro A., Omran N.R., Emami M.H., Moinvaziri H., Badrzadeh Z., "The gabbro (shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran", J. Asian Earth Sci. 38 (2010) 199-219. [DOI:10.1016/j.jseaes.2010.01.002]
12. [12] Castro A., Aghazadeh M., Badrzadeh Z., Chichorro M., "Late Eocene-Oligocene Post-Collisional Monzonitic Intrusions from the Alborz Magmatic Belt, NW Iran. An Example of Monzonite Magma Generation from a Metasomatized Mantle Source", Lithos 180-181 (2013)109-127. [DOI:10.1016/j.lithos.2013.08.003]
13. [13] Whitney, D.L. and Evans, B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist, 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
14. [14] Sillitoe R.H., and Gappe I.M., Jr., "Philippine porphyry copper deposits: Geologic setting and characteristics: Bangkok, Thailand, United Nations ESCAP", CCOP Technical Publication, 14 (1984) 89.
15. [15] Sillitoe H.R., "Porphyry copper systems", Economic Geology, 105 (2010) 3-41. [DOI:10.2113/gsecongeo.105.1.3]
16. [16] Wilkinson J.J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
17. [17] Hedenquist J.W., Arribas A. R., Gonzalez-Urien G., "Exploration for epithermal gold deposits", Economic Geology, 13 (2000) 245-277. [DOI:10.5382/Rev.13.07]
18. [18] Montoya J.M., Hemeley J.J., "Activity relations and stabilities in alkali feldspar and mica alteration reactions", Economic Geology, 70 (1975) 557-594. [DOI:10.2113/gsecongeo.70.3.577]
19. [19] Rose A.W., "Zonal relations of wallrock alteration and sulfide distribution at porphyry copper deposits", Economic Geology, 65 (1970) 920-936. [DOI:10.2113/gsecongeo.65.8.920]
20. [20] Liu X., Richard A., Pironon J., Rusk B.G., "Vein Formation and Reopening in a Cooling Yet Intermittently Pressurized Hydrothermal System: The Single-Intrusion Tongchang Porphyry Cu Deposit", Geosciences, 13 (2023), 107. [DOI:10.3390/geosciences13040107]
21. [21] Jebrak M., "Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution", Ore Geology Reviews, 12 (1997)111- 134. [DOI:10.1016/S0169-1368(97)00009-7]
22. [22] Richards J.P., "Magmatic to hydrothermal metal fluxes in convergent and collided margins", Ore Geology Reviews 40 (2011) 1-26. [DOI:10.1016/j.oregeorev.2011.05.006]
23. [23] Kouzmanov K., Pokrovski G.S., "Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems", Society of Economic Geologists, Special Publication 16 (2012) 573-618. [DOI:10.5382/SP.16.22]
24. [24] Bodnar R. J., Vityk .M.O., "Interpretation of microthermometric data for H2O-NaCl fluid inclusions in Minerals, Methods and Applications, B. De Vivo and M. L. Frezzotti, eds. ", Virginia Tech, Blacksburg (1994) 117-130.
25. [25] Ahmad S. N., Rose A. W., "Fluid inclusion in porphyry and skarn ore at Stanta, Rita, New Mexico", Economic Geology, 75 (1980) 229-250 [DOI:10.2113/gsecongeo.75.2.229]
26. [26] Haas J. L., "The effect of salinity on the maximum thermal gradient of a hydrothermal system in hydrostatic pressure", Economic Geology, 66 (1971) 940-946. [DOI:10.2113/gsecongeo.66.6.940]
27. [27] Camprubi A., Albinson, T., "Epithermal deposits in Mexico: Update of current knowledge, and an empirical reclassification". Geol. Soc. Spec. Pap, 422 (2007) 377-415. [DOI:10.1130/2007.2422(14)]
28. [28] Naden J., Killias S.P., Darbyshire D.P.F., "Active geothermal system with entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island", Greece. Geology, 33 (2005), 541-544. [DOI:10.1130/G21307.1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb