Volume 32, Issue 2 (7-2024)                   www.ijcm.ir 2024, 32(2): 275-286 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zirjanizadeh S, Miribedokhti R. Geology, mineralogy and fluid inclusion studies of the Kajah deposit, northwest of Ferdows, South Khorasan. www.ijcm.ir 2024; 32 (2) :275-286
URL: http://ijcm.ir/article-1-1861-en.html
1- Department of geology, University of Gonabad, Gonabad, Iran
Abstract:   (175 Views)
The study area is situated within the Lut Block, 40 Km northeast of Ferdows. The
oldest exposed rocks are Cretaceous limestone. The composition ranges of Volcanic rocks between andesite, andesite-basalt and rhyolitic tuff. Sub-volcanic diorite porphyry intruded in the volcanic rocks. Alteration zones are propylitic, silicified and argillic around the vein and surrounding host rocks. Sulfide minerals include pyrite, galena and sphalerit the secondary minerals comprise covelite, malachite, azurite, chrysocolla, hemimorphite and iron oxides. The veins contain an average of 2.14 percent of lead and 4.40  percent of zinc. Fluid inclusion petrography and microthermometry results reveal that the fluid inclusion assemblages developed in the different types, including single-phase vapor fluid inclusion, vapor-rich two-phase fluid inclusions and liquid-rich two-phase fluid inclusions. On the basis of fluid inclusion studiel,  the ore-forming fluids has temperature 204–321 °C), and salinity 6.2–15wt% NaCl equiv. Fluid boiling and mixing most likely were the vital factors controlled the metal precipitation. The fluid pressure during the formation of the ore minerals was estimated to be between 50 to 150 bars. Based on the data obtained from fluid inclusions, it is suggested that the ore minerals were formed at a depth of 700 meters below the old water table
Full-Text [PDF 1879 kb]   (67 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Karimpour M.H., Malekzadeh Shafaroudi A., Farmer G.L., Stern C.R., "Petrogenesis of Granitoids, U-Pb zircon geochronology, Sr-Nd Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran", Journal of Economic Geology 1(6) (2012) 1-27.
2. DOI:10.22067/econg.v4i1.13391.
3. [2] Malekzadeh A., "Geology, mineralization, alteration, geochemistry, microthermometry, isotope studies and determining the mineralization source of Khoopic and Maherabad exploration areas", (2009) Ph.D thesis, Ferdowsi University of Mashhad.
4. [3] Moradi M., Karimpour M.H., Farmer L.G., Stern C.R., "Rb-Sr & Sm-Nd Isotopic Composition, U-Pb- Th (zircon) Geochronology and Petrogenesis of Najmabad granodiorite batholith eastern Iran", Journal of Economic Geology 3(2) (2011) 127-145.
5. [DOI: 10.22067/econg.v3i2.11436].
6. [4] Arjmandzadeh R., Karimpour M.H., Mazaheri S.A., Santos J.F., Medina J.M., Homam S.M., "Sr-Nd isotope geochemistry and petrogenesis of the Chah- Shaljami granitoids (Lut Block, eastern Iran) ", Journal of Asian Earth Sciences 41(3) (2011) 283-296. [DOI:10.1016/j.jseaes.2011.02.014]
7. [ DOI:10.1016/j.jseaes.2011.02.014]. [DOI:10.1016/j.jseaes.2011.02.014]
8. [5] Karimpour M.H., "Comparison of Qaleh Zari Cu-Au-Ag deposit with other iron oxides Cu-Au (IOCG-Type) deposits & new classification", Iranian Journal of Crystallography and Mineralogy (13) (2005) 165-184.
9. [6] Karimpour M.H., Stern C.R., "Advance spaceborne thermal emission and reflection radiometer (ASTER) mineral mapping to discriminate high sulfidation, reduced intrusion related, and iron oxide gold deposits, eastern Iran", Applied Sciences 9 (2009) 815-825. [DOI:10.3923/jas.2009.815.828]
10. [ DOI: 10.3923/jas.2009.815.828]. [DOI:10.3923/jas.2009.815.828]
11. [7] Malekzadeh Shafaroudi A., Karimpour M.H., Stern C.R., "Zircon U-Pb dating of Maherabad porphyry copper-gold prospect area: evidence for a late Eocene porphyry- related metallogenic epoch in east of Iran", Journal of Economic Geology 3(1) (2011) 41-60 (in Persian with English abstract).
12. [DOI:10.22067/econg.v3i1.11439].
13. [8] Malekzadeh Shafaroudi A., Karimpour M.H., Golmohammadi A., "Zircon U-Pb geochronology and petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran", Journal of Asian Earth 64(5) (2013) 256-271. [DOI: 10.1016/j.jseaes.2012.12.028]. [DOI:10.1016/j.jseaes.2012.12.028]
14. [9] Malekzadeh Shafaroudi A., Karimpour M.H., Stern C.R., "The Khopik porphyry copper prospect, Lut Block, Eastern Iran: Geology, alteration and mineralization, fluid inclusion, and oxygen isotope studies", Ore Geology Reviews 65 (2) (2015) 522-544. [DOI:10.1016/j.oregeorev.2014.04.015]
15. [ DOI:10.1016/j.oregeorev.2014.04.015]. [DOI:10.1016/j.oregeorev.2014.04.015]
16. [10] Richards J.P., Spell T., Rameh E., Razique A., Fletcher T., "High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan", Economic Geology 107 (2) (2012) 295-332.[ DOI:10.2113/econgeo.107.2.295]. [DOI:10.2113/econgeo.107.2.295]
17. [11] Esmaeily D., Nedelec A., Valizadeh M.V., Moore F., Cotton J., "Petrology of the Jurassic Shah-kuh granite (eastern Iran), with reference to tin mineralization", Journal of Asian Earth Sciences 25 (2005) 961-980 [DOI:10.1016/j.jseaes.2004.09.003]
18. [DOI: 10.1016/j.jseaes.2004.09.003 ]. [DOI:10.1016/j.jseaes.2004.09.003]
19. [12] Miri Beydokhti R., Karimpour M.H., Mazaheri S.A, "Studies of remote sensing, geology, alteration, mineralization and geochemistry of Balazard copper-gold prospecting area, west of Nehbandan", Iranian Journal of Crystallography and Mineralogy, 22(3) (2014) 459-470. (in Persian with English abstract).
20. [13] Zirjanizadeh S., Samiee S., "Evidences of epithermal mineralization at Bidook gold vein deposit (east of Iran), based on geology, alteration, mineralization, geochemistry and thermometery data", Iranian Journal of Crystallography and Mineralogy 28(4) (2020) (907-920). [DOI:10.52547/ijcm.28.4.907]
21. [14] Samiee S., Karimpour MH., . Ghaderi M., Heidarian Shahri M. R., , Klöetzli U., Santos J.F., "Petrogenesis of subvolcanic rocks from the Khunik prospecting area, south of Birjand, Iran: Geochemical, Sr-Nd isotopic and U-Pb zircon constraints", Journal of Asian Earth Sciences, 115(2016) 170-182. [DOI:10.1016/j.jseaes.2015.09.023]
22. [DOI:10.1016/j.jseaes.2015.09.023] [DOI:10.1016/j.jseaes.2015.09.023]
23. [15] Najafi A., Karimpour M.H., Ghaderi M., Stern C.R., Farmer G.L., "U-Pb zircon geochronology, Rb-Sr and Sm-Nd isotope geochemistry, and petrogenesis of granitiod rocks at Kaje prospecting area, northwest Ferdows: Evidence for upper Cretaceous magmatism in Lut block", Journal of Economic Geology 6(1)(2014) 107-135. [DOI:10.22067/econg.v6i1.24415].
24. [16] Steele-MacInnis, M., Bodnar, R.J. Naden, J., "Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data", Geochimica et Cosmochimica Acta, 75(1) (2011)21-40.[ DOI:10.1016/j.gca.2010.10.002]. [DOI:10.1016/j.gca.2010.10.002]
25. [17] Roedder E., "fluid inclusions", Reviews in Mineralogy & Geochemistry 12(1984) 646p. [ DOI:10.1515/9781501508271]. [DOI:10.1515/9781501508271]
26. [18] Shepherd T. J., Rankin A. H., M Alderton D. H., "A practical guide to fluid inclusion studies", New York, Blackie, (1985) 239p.
27. [19] Aghanabati S. A., "Geology of Iran, Geological Survey of Iran", Tehran( 2004), 586p
28. [20] Levinson A.A., "Introduction to Exploration Geochemistry", (Applied Publishing: Calgary), 1980, 612 p.
29. [21] Lu H.Z., Fan H.R., Ni P., Ou G.X., Shen K., Zhang W. H., "Fluid Inclusions",
30. Science Press, Beijing, (2004)1-487 (in Chinese with English abstract).
31. [22] Simmons S.F., Arehart G., Simpson M. P., Mauk J.L., "Origin of Massive Calcite Veins in the Golden Cross Low-Sulfidation, Epithermal Au-Ag Deposit, New Zealand", Economic Geology 95 (1)(2000) 99-112. [DOI:10.2113/gsecongeo.95.1.99]
32. [ DOI:10.2113/gsecongeo.95.1.99]. [DOI:10.2113/gsecongeo.95.1.99]
33. [23] Wilkinson J. J., "Fluid inclusions in hydrothermal ore deposits", Lithos 55 (1-4)(2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
34. [DOI: 10.1016/S0024-4937(00)00047-5] [DOI:10.1016/S0024-4937(00)00047-5]
35. [24] Beane R. E., "The Magmatic-Meteoric Transition", Geothermal Resources Council, Special Report 13(1983) 245-253.
36. [25] Fournier R. O., "Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment", Economic Geology 94(8) (1999) 1193-1211. [DOI:10.2113/gsecongeo.94.8.1193]
37. [DOI: 10.2113/gsecongeo.94.8.1193]. [DOI:10.2113/gsecongeo.94.8.1193]
38. Drummond, S. E., and Ohmoto, H., 1985- Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology 80, 126-147. [DOI:10.2113/gsecongeo.80.1.126]
39. [26] Roeder E., Bodnar R.J., "Fluid inclusion studies of hydrothermal ore deposits", In: Barnes H. L. (ed) Geochemistry of Hydrothermal Ore Deposits 3rd edition. NewYork, NY: John Wiley, (1997) 657-697.
40. [27] Ulrich T., Günther D., Heinrich C.A., "The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MSAnalysis of Fluid Inclusions: Bajo de la Alumbrera, Argentina", Economic Geology 96 (8) (2001) 1743-1774. [DOI:10.2113/gsecongeo.96.8.1743]
41. [ DOI:10.2113/gsecongeo.96.8.1743]. [DOI:10.2113/gsecongeo.96.8.1743]
42. [28] Sillitoe R.H., "Porphyry Copper Systems", Economic Geology 105 (1) (2010) 3-41. [DOI:10.2113/gsecongeo.105.1.3]. [DOI:10.2113/gsecongeo.105.1.3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb